Celiac.com Sponsor (A1):



Celiac.com Sponsor (A1-m):


  • You've found your Celiac Tribe! Join our like-minded, private community and share your story, get encouragement and connect with others.

    💬

    • Sign In
    • Sign Up
  • Jefferson Adams

    Can Gene Cells Reveal Extent of Celiac-Related Gut Damage?

    Jefferson Adams
    0
    Reviewed and edited by a celiac disease expert.

      Can gene cells tell us about potential gut damage in people with celiac disease?


    What can gene cells tell us about potential gut damage in people with celiac disease? Photo: CC--Brian Smithson
    Caption: What can gene cells tell us about potential gut damage in people with celiac disease? Photo: CC--Brian Smithson

    Celiac.com 06/27/2017 - What can gene cells tell us about potential gut damage in people with celiac disease? Can they be harnessed to paint an accurate picture of what's going on in the gut?

    A team of researchers recently set out to study autoimmunity and the transition in immune cells as dietary gluten induces small intestinal lesions. Specifically, they wanted to know if a B-cell gene signature correlates with the extent of gluten-induced gut damage in celiac disease.



    Celiac.com Sponsor (A12):






    Celiac.com Sponsor (A12-m):




    The research team included Mitchell E. Garber, Alok Saldanha, Joel S. Parker, Wendell D. Jones, Katri Kaukinen, Kaija Laurila, Marja-Leena Lähdeaho, Purvesh Khatri, Chaitan Khosla, Daniel C. Adelman, and Markku Mäki.

    They are variously affiliated with the Alvine Pharmaceuticals, Inc, San Carlos, California, the Department of Chemistry, Stanford, California, the Institute for Immunity, Transplantation and Infection, Stanford, California, the Division of Biomedical Informatics, Department of Medicine, Stanford, California, the Department of Chemical Engineering, Stanford, California, the Stanford ChEM-H, Stanford University, Stanford, California, the InterSystems Corporation, Cambridge, Massachusetts, the Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, the Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, the EA Genomics, Division of Q2 Solutions, Morrisville, North Carolina, the Tampere Center for Child Health Research, Tampere, Finland, the University of Tampere Faculty of Medicine and Life Sciences, Tampere, Finland, the Department of Pediatrics, Tampere, Finland, the Department of Internal Medicine, Tampere, Finland, Tampere University Hospital, Tampere, Finland, and with the Division of Allergy/Immunology, Department of Medicine, University of California San Francisco, San Francisco, California.

    The team looked at seventy-three celiac disease patients who followed a long-term, gluten-free diet. Those patients ingested a known amount of gluten daily for 6 weeks. Prior to the study, the team took a peripheral blood sample and intestinal biopsy specimens, then did the same after 6 weeks of gluten challenge.

    To accurately quantify gluten-induced intestinal injury, they reported biopsy results on a continuous numeric scale that measured the villus-height–to–crypt-depth ratio.

    As patient gut mucosa remained either relatively healthy or else deteriorated under the gluten challenge, the team isolated pooled B and T cells from whole blood, and used DNA microarray to analyze RNA for changes in peripheral B- and T-cell gene expression that correlated with changes in villus height to crypt depth.

    As is often the case with celiac disease, intestinal damage from the gluten challenge varied considerably among the patients, ranging from no visible damage to extensive damage. Genes differentially expressed in B cells correlated strongly with the extent of gut damage. Increased B-cell gene expression correlated with a lack of sensitivity to gluten, whereas their decrease correlated with gluten-caused mucosal damage.

    The the correlation with gut damage was tied to a core B-cell gene module, representing a subset of B-cell genes analyzed.

    In patients with little to no intestinal damage, genes comprising the core B-cell module showed an overall increase in expression over the 6 week period.

    This suggests that B-cell immune response in these patients may be a reaction to promote mucosal homeostasis and circumvent inflammation.

    The idea that B-cell gene signature can reveal the extent of gut damage in celiac patients is intriguing. Clearly more research is needed to determine how this revelation might be harnessed to improve the evaluation and treatment of celiac disease.

    Source:

    0

    User Feedback

    Recommended Comments

    There are no comments to display.



    Join the conversation

    You are posting as a guest. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • About Me

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University, and has authored more than 2,500 articles on celiac disease. His coursework includes studies in science, scientific methodology, biology, anatomy, medicine, logic, and advanced research. He previously served as SF Health News Examiner for Examiner.com, and devised health and medical content for Sharecare.com. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of the book "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-m):




  • Related Articles

    Jefferson Adams
    Celiac.com 06/03/2015 - Although dietary gluten is the trigger for celiac disease, risk is strongly influenced by genetic variation in the major histocompatibility complex (MHC) region.
    A team of researchers recently set out to fine map the MHC association signal to identify additional celiac disease risk factors independent of the HLA-DQA1 and HLA-DQB1 alleles. The researchers included J. Gutierrez-Achury, A. Zhernakova, S.L. Pulit, G. Trynka, K.A. Hunt, J. Romanos, S. Raychaudhuri, D.A. van Heel, C. Wijmenga, and P.I. de Bakker.
    Their team fine mapped the MHC association signal looking for risk factors other than the HLA-DQA1 and HLA-DQB1 alleles...

    Jefferson Adams
    Celiac.com 10/11/2016 - Celiac disease is an autoimmune disease in genetically susceptible individuals and is triggered by adverse immune reactions to gluten, a protein found in wheat and other grains.
    Researchers led by a research group at Finland's University of Tampere, led by Keijo Viiri, PhD, recently discovered a mechanism that triggers aberrant features in celiac disease and colorectal cancer. Disturbances in this mechanism seem to trigger certain symptoms celiac disease, and possibly in colorectal cancer.
    The research team's recent study offers new details on the pathogenesis of the differentiation defect of the epithelium in the small i...

    Jefferson Adams
    Celiac.com 01/23/2017 - It makes some kind of sense that kids with celiac disease who follow a gluten-free diet will recover, their guts will normalize, and their levels of IgA tissue transglutaminase antibodies would drop to reflect this change; whereas high antibodies likely mean no recovery, right? But is that true? Is there really a correlation on any level?
    To test this idea, a team of researchers recently set out to document the rate of mucosal recovery in kids with celiac disease on a gluten-free diet. They also wanted to figure out whether IgA tissue transglutaminase (tTG) correlates with mucosal damage at the time of a repeat endoscopy with...

    Jefferson Adams
    Celiac.com 05/18/2017 - Researchers understand pretty well that celiac disease is driven in part by an accumulation of immune cells in the duodenal mucosa as a consequence of both adaptive and innate immune responses to undigested gliadin peptides.
    Mast cells are innate immune cells that produce a majority of co-stimulatory signals and inflammatory mediators in the intestinal mucosa. A team of researchers recently set out to evaluate the role of mast cells in the development of celiac disease.
    The research team included Barbara Frossi, PhD, Claudio Tripodo, MD, Carla Guarnotta, PhD, Antonio Carroccio, MD, Marco De Carli, MD, Stefano De Carli, MD...