• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    71,799
    Total Members
    3,093
    Most Online
    Jane Erasmus
    Newest Member
    Jane Erasmus
    Joined
  • Announcements

    • admin

      Frequently Asked Questions About Celiac Disease   04/07/2018

      This Celiac.com FAQ on celiac disease will guide you to all of the basic information you will need to know about the disease, its diagnosis, testing methods, a gluten-free diet, etc.   Subscribe to Celiac.com's FREE weekly eNewsletter   What are the major symptoms of celiac disease? Celiac Disease Symptoms What testing is available for celiac disease?  Celiac Disease Screening Interpretation of Celiac Disease Blood Test Results Can I be tested even though I am eating gluten free? How long must gluten be taken for the serological tests to be meaningful? The Gluten-Free Diet 101 - A Beginner's Guide to Going Gluten-Free Is celiac inherited? Should my children be tested? Ten Facts About Celiac Disease Genetic Testing Is there a link between celiac and other autoimmune diseases? Celiac Disease Research: Associated Diseases and Disorders Is there a list of gluten foods to avoid? Unsafe Gluten-Free Food List (Unsafe Ingredients) Is there a list of gluten free foods? Safe Gluten-Free Food List (Safe Ingredients) Gluten-Free Alcoholic Beverages Distilled Spirits (Grain Alcohols) and Vinegar: Are they Gluten-Free? Where does gluten hide? Additional Things to Beware of to Maintain a 100% Gluten-Free Diet What if my doctor won't listen to me? An Open Letter to Skeptical Health Care Practitioners Gluten-Free recipes: Gluten-Free Recipes
  • 0

    WHAT FACTORS PROMOTE HYPERTRANSAMINASEMIA IN CELIAC DISEASE?


    Jefferson Adams

    Celiac.com 07/23/2014 - Transaminasemia develops through various pathways in patients with celiac disease. Currently, there is not much information on risk factors specifically attributable to celiac disease.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    A team of researchers recently set out to determine what factors contribute to hypertransaminasemia in patients with celiac disease. The research team included B. Zanini B, R. Baschè A., Ferraresi, M.G. Pigozzi, C. Ricci, F. Lanzarotto, V. Villanacci, and A. Lanzini.

    They analyzed data collected from consecutive patients referred from January 1997 through December 2009 to the celiac disease clinic at the Spedali Civili of Brescia, Italy. They then used serologic and biopsy analysis to assess the factors influencing hypertransaminasemia in 683 patients with celiac disease (group A), and 304 patients with functional gastrointestinal syndromes (group B). Both groups were about the same average age and range.

    The research team detected hypertransaminasemia in 138 patients in group A (20%). Factors associated with the condition included malabsorption (odds ratio [OR], 2.22; P = .004), diarrhea (OR, 1.72; P = .005), and increasing severity of mucosal lesion (Marsh-Oberhuber class; OR, 1.46; P = .001), but not body mass index (BMI) or the blood levels of tissue-transglutaminase antibodies (tTG).

    The team also detected hypertransaminasemia in 22 patients from group B (7%), which they found to be associated with the World Health Organization's BMI categories (OR, 7.9; P < .001). A total of 313 patients from group A had significantly higher levels of tTG at baseline (25.2 ± 16.9 U/L aspartate aminotransferase [AST]) than a similar bunch from group B (20.6 ± 9.9 U/L AST, P < .0001). These levels were related to BMI in group B (P = .0012), but not group A.

    Patients eating gluten-free diets saw levels of AST decrease from 25.2 ± 16.9 U/L to 19.9 ± 6.6 U/L (P < .0001). This decrease was independent of the changes of duodenal histology and tTG and correlated with BMI (P = .0007). Meanwhile, the prevalence of hypertransaminasemia in gluten-free patients decreased from 13% to 4%.

    These study results show that hypertransaminasemia is more common in people with celiac disease than in patients with functional gut syndromes. Also, hypertransaminasemia is related to the severity of the duodenal lesion and malabsorption, but unrelated to BMI.

    By contrast, the control group, with functional gut syndromes, showed a positive correlation between the levels of AST and BMI. This relationship was restored when patients with celiac disease began to follow gluten-free diets.

    Source:


    Image Caption: Photo: CC--Bilal Kamoon
    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoticons maximum are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   9 Members, 1 Anonymous, 1,331 Guests (See full list)

  • Related Articles

    admin

    Author: Bardella MT; Fraquelli M; Quatrini M; Molteni N; Bianchi P; Conte D
    Address: Cattedra di Gastroenterologia, Universit a degli Studi di Milano, IRCCS Ospedale Maggiore, Italy.
    Source: Hepatology, 1995 Sep, 22:3, 833-6
    The prevalence of hypertransaminasemia and the effect of gluten-free diet (GFD) were evaluated in 158 consecutive adult celiac patients, 127 women and 31 men, aged 18 to 68 years (mean, 32). At diagnosis, 67 patients (42%) had raised aspartate and/or alanine transaminase levels (AST and ALT; mean, 47 IU/L, range, 30 to 190; and 61 IU/L, range, 25 to 470, respectively), whereas 91 patients had normal liver function tests (LFT). Patients with and without hypertransaminasemia were comparable for epidemiological data, body mass index (18.5 vs. 19.6), and severity of intestinal histological involvement. All patients were given a strict GFD and were followed for 1 to 10 years (median, 4). At 1 year, a highly significant improvement in intestinal histology was observed in both groups.

    Roy Jamron

    Celiac.com 04/27/2006 - Liver abnormalities have been found in a high percentage of celiacs when first diagnosed, around 42% according to some studies. Gluten toxicity and increased intestinal permeability have both been suspected as a cause of liver abnormalities. Serious liver disorders, including cirrhosis, have been found in association with a number of celiac disease cases which appear to resolve upon treatment and maintaining a gluten-free diet. It is not clear whether some damage to the liver may remain long term even after maintaining a gluten-free diet. Below is an interesting study (Hepatology. 2006 Mar 23;43(4):837-846) of the effects of induced liver cirrhosis on the intestinal mucosa which results in oxidative stress and an alteration of intestinal permeability, intestinal bacteria makeup, and bacterial overgrowth. Hence not only does damage to the intestine in response to gluten often result in bacterial overgrowth, but damage to the liver by gluten may also contribute to bacterial overgrowth and mucosal alterations. Damage to the liver caused by celiac disease may also have other consequences, as the liver plays many important roles including storage and production of important compounds and proteins and the removal of fat soluble toxic substances. As we are increasingly exposed to endocrine disrupting xenobiotic environmental chemicals and toxic substances, a dysfunctional livers inability to remove fat soluble toxic substances may leave celiacs more susceptible to adverse effects from these chemicals which can accumulate in adipose (fatty) tissue. In the Winter 2006 issue of Scott Adams' Celiac.com Newsletter, I discuss in detail, in Unraveling Fibromyalgia, how a dysfunctional liver and fat soluble toxic substances accumulating in innervated and vascularlized adipose tissue in the vicinity of joints may be the cause of fibromyalgia. Bacterial overgrowth has also been found in association with fibromyalgia. But clearly, lesser degrees of fatigue, muscle and joint pain, thyroid disorders, and other symptoms could also result from liver dysfunction caused by celiac disease. The inability of the liver to remove xenobiotic chemicals may also increase the risk of breast and other cancers.
    Recently a new review on liver disorders and celiac disease has appeared (See below - World J Gastroenterol 2006 March 14;12(10): 1493-1502 and 1503-1508): Liver Damage and the Intestinal Mucosa. One cannot ignore the secondary effects and symptoms that liver damage may add to those symptoms caused by glutens effect on the intestinal mucosa. Those unexplained aches and pains and other symptoms and disorders which have frequently been reported by some celiacs may be a result of liver dysfunction.
    Some notes: Elevated liver enzymes are the result of liver enzymes released by damaged liver cells. The article cites one study stating A gluten-free diet for 1 to 10 years resulted in complete normalization of liver chemistry tests in 95% patients. Normal liver chemistry tests DO NOT necessarily mean that the liver is functioning normally and that no damage remains. See: Special Considerations in Interpreting Liver
    Function Tests - http://www.aafp.org/afp/990415ap/2223.html
    Referenced Abstracts:

    Hepatology. 2006 Mar 23;43(4):837-846
    Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria.
    Natarajan SK, Ramamoorthy P, Thomas S, Basivireddy J, Kang G, Ramachandran A, Pulimood AB, Balasubramanian KA.
    The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India.


    Spontaneous bacterial peritonitis is a major cause of mortality after liver cirrhosis. Altered permeability of the mucosa and deficiencies in host immune defenses through bacterial translocation from the intestine due to intestinal bacterial overgrowth have been implicated in the development of this complication. Molecular mechanisms underlying the process are not well known. In order to understand mechanisms involved in translocation of bacteria, this study explored the role of oxidative stress in mediating changes in intestinal mucosal glycosylation and luminal bacterial content during cirrhosis. CCl(4)-induced cirrhosis in rats led to prolonged oxidative stress in the intestine, accompanied by increased sugar content of both intestinal brush border and surfactant layers. This was accompanied by changes in bacterial flora in the gut, which showed increased hydrophobicity and adherence to the mucosa. Inhibition of xanthine oxidase using sodium tungstate or antioxidant supplementation using vitamin E reversed the oxidative stress, changes in brush border membrane sugar content, and bacterial adherence. In conclusion, oxidative stress in the intestine during cirrhosis alters mucosal glycosylation, accompanied by an increased hydrophobicity of luminal bacteria, enabling increased bacterial adherence onto epithelial cells. This might facilitate translocation across the mucosa, resulting in complications such as spontaneous bacterial peritonitis.

    World J Gastroenterol 2006 March 14;12(10):1503-1508
    Hepatobiliary and pancreatic disorders in celiac disease
    Hugh James Freeman
    Free full text:
    http://www.wjgnet.com/1007-9327/12/1503.asp


    A variety of hepatic and biliary tract disorders may complicate the clinical course of celiac disease. Some of these have been hypothesized to share common genetic factors or have a common immunopathogenesis, such as primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune forms of hepatitis or cholangitis. Other hepatic changes in celiac disease may be associated with malnutrition resulting from impaired nutrient absorption, including hepatic steatosis. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma. Finally, pancreatic exocrine function may be impaired in celiac disease and represent a cause of treatment failure.

    World J Gastroenterol 2006 March 14;12(10):1493-1502
    Gut flora and bacterial translocation in chronic liver disease
    John Almeida, Sumedha Galhenage, Jennifer Yu, Jelica Kurtovic, Stephen M
    Riordan
    Free full text:
    http://www.wjgnet.com/1007-9327/12/1493.asp


    Increasing evidence suggests that derangement of gut flora is of substantial clinical relevance to patients with cirrhosis. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen, in particular, predispose to an increased potential for bacterial infection in this group. Recent studies suggest that, in addition to their role in the pathogenesis of overt infective episodes and the clinical consequences of sepsis, gut flora contributes to the pro-inflammatory state of cirrhosis even in the absence of overt infection. Furthermore, manipulation of gut flora to augment the intestinal content of lactic acid-type bacteria at the expense of other gut flora species with more pathogenic potential may favorably influence liver function in cirrhotic patients. Here we review current concepts of the various inter-relationships between gut flora, bacterial translocation, bacterial infection, pro-inflammatory cytokine production and liver function in this group.

    Jefferson Adams
    Celiac.com 03/06/2009 - A report in the February 3rd issue of Digestive and Liver Disease highlights the present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
    A team of American and Italian researchers recently set out to review the current body of literature regarding transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities. The research team was made up of doctors L. Elli, C.M. Bergamini, C.M. Bardella, and D. Schuppan.
    They are associated with one or more of the following: Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, in Milan, Italy; the Department of Biochemistry, University of Ferrara, Via Luigi Borsari, Ferrara, Italy; the Department of Medical Sciences, University of Milan, Italy; and the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
    Their report in the February issue of Digestive and Liver Disease highlights the present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
    Transglutaminases are a group of eight presently recognized calcium-dependent enzymes that act as catalysts to cross-link or deamidate proteins. They play a role in key biological functions such as the healing of wounds, the repair of damaged tissue, fibro-genesis, apoptosis, inflammation and management of the cell cycle. Thus, they play a role in numerous key patho-mechanisms of autoimmune, inflammatory and degenerative diseases, a number of which involve the gastrointestinal system.
    Transglutaminase 2 is of central importance, as it is crucial to the pathogenesis of celiac disease, and influences inflammation and fibro-genesis in inflammatory bowel and chronic liver disease.
    The recent review has implications for celiac disease, collagen, Crohn's disease, extra-cellular matrix, gliadin, inflammatory bowel disease; NFkB, and ulcerative colitis.
    Dig Liver Dis. 2009 Feb 3.


    Jefferson Adams
    Celiac.com 06/22/10 - A research team set out to examine gut diseases and prognostic factors tied to non-cirrhotic intrahepatic portal hypertension. The team included C. E. Eapen, Peter Nightingale, Stefan G. Hubscher, Peter J. Lane, Timothy Plant, Dimitris Velissaris, and Elwyn Elias.
    The prognosis for non-cirrhotic intrahepatic portal hypertension (NCIPH) is usually benign. Assessment of a cohort study followed-up at a tertiary referral center leads the research team to hypothesize that gut-derived prothrombotic factors may contribute to the pathogenesis and prognosis of NCIPH.
    The team conducted a retrospective analysis of celiac disease indicators in 34 NCIPH patients. They also looked for associated gut conditions.
    Survival rates for transplant-free NCIPH patients from first presentation of symptoms was 94% (SE: 4.2%) at one year, 84% (6.6%) at 5-years, and 69% (9.8%) at 10-years.
    Sixteen of the patients (53%) showed decompensated liver disease. Three (9%) patients suffered ulcerative colitis, while five of 31 (16%) had clinical celiac disease. Kaplan–Meier analysis showed that celiac disease patients was a predictor of lower transplant-free survival (p = 0.018) rates.
    Multivariable Cox regression analysis revealed that other predictors of reduced transplant-free survival included older age at first NCIPH presentation, hepatic encephalopathy, and portal vein thrombosis.
    Just over one-third (36%) of patients with NCIPH showed substantially higher initial serum IgA anticardiolipin antibody (CLPA), compared to 6% with Budd–Chiari syndrome (p = 0.032 using Fisher’s exact test) and no celiac disease patients without concomitant liver disease (p = 0.007).
    In addition to noting factors affecting prognosis, the team found that just over half (53%) of NCIPH cases resulted in liver failure.
    Source:

    Dig Dis Sci. 2010 May 25. PMID: 20499175

  • Recent Articles

    Jefferson Adams
    Celiac.com 04/19/2018 - Previous genome and linkage studies indicate the existence of a new disease triggering mechanism that involves amino acid metabolism and nutrient sensing signaling pathways. In an effort to determine if amino acids might play a role in the development of celiac disease, a team of researchers recently set out to investigate if plasma amino acid levels differed among children with celiac disease compared with a control group.
     
    The research team included Åsa Torinsson Naluai, Ladan Saadat Vafa, Audur H. Gudjonsdottir, Henrik Arnell, Lars Browaldh, and Daniel Agardh. They are variously affiliated with the Institute of Biomedicine, Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; the Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden; the Department of Clinical Science and Education, Karolinska Institute, Sodersjukhuset, Stockholm, Sweden; the Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; the Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; and with the Nathan S Kline Institute in the U.S.A.
    First, the team used liquid chromatography-tandem mass spectrometry (LC/MS) to analyze amino acid levels in fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls. They then crafted a general linear model using age and experimental effects as covariates to compare amino acid levels between children with celiac disease and non-celiac control subjects.
    Compared with the control group, seven out of twenty-three children with celiac disease showed elevated levels of the the following amino acids: tryptophan; taurine; glutamic acid; proline; ornithine; alanine; and methionine.
    The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects.
    This study shows that amino acids can influence inflammation and may play a role in the development of celiac disease.
    Source:
    PLoS One. 2018; 13(3): e0193764. doi: & 10.1371/journal.pone.0193764

    Jefferson Adams
    Celiac.com 04/18/2018 - To the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service animals.
    If you’ve flown anywhere lately, you may have seen them. People flying with their designated “emotional support” animals. We’re not talking genuine service animals, like seeing eye dogs, or hearing ear dogs, or even the Belgian Malinois that alerts its owner when there is gluten in food that may trigger her celiac disease.
    Now, to be honest, some of those animals in question do perform a genuine service for those who need emotional support dogs, like veterans with PTSD.
    However, many of these animals are not service animals at all. Many of these animals perform no actual service to their owners, and are nothing more than thinly disguised pets. Many lack proper training, and some have caused serious problems for the airlines and for other passengers.
    Now the major airlines are taking note and introducing stringent requirements for service animals.
    Delta was the first to strike. As reported by the New York Times on January 19: “Effective March 1, Delta, the second largest US airline by passenger traffic, said it will require passengers seeking to fly with pets to present additional documents outlining the passenger’s need for the animal and proof of its training and vaccinations, 48 hours prior to the flight.… This comes in response to what the carrier said was a 150 percent increase in service and support animals — pets, often dogs, that accompany people with disabilities — carried onboard since 2015.… Delta said that it flies some 700 service animals a day. Among them, customers have attempted to fly with comfort turkeys, gliding possums, snakes, spiders, and other unusual pets.”
    Fresh from an unsavory incident with an “emotional support” peacock incident, United Airlines has followed Delta’s lead and set stricter rules for emotional support animals. United’s rules also took effect March 1, 2018.
    So, to the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service and emotional support animals.
    Source:
    cnbc.com

    admin
    WHAT IS CELIAC DISEASE?
    Celiac disease is an autoimmune condition that affects around 1% of the population. People with celiac disease suffer an autoimmune reaction when they consume wheat, rye or barley. The immune reaction is triggered by certain proteins in the wheat, rye, or barley, and, left untreated, causes damage to the small, finger-like structures, called villi, that line the gut. The damage occurs as shortening and villous flattening in the lamina propria and crypt regions of the intestines. The damage to these villi then leads to numerous other issues that commonly plague people with untreated celiac disease, including poor nutritional uptake, fatigue, and myriad other problems.
    Celiac disease mostly affects people of Northern European descent, but recent studies show that it also affects large numbers of people in Italy, China, Iran, India, and numerous other places thought to have few or no cases.
    Celiac disease is most often uncovered because people experience symptoms that lead them to get tests for antibodies to gluten. If these tests are positive, then the people usually get biopsy confirmation of their celiac disease. Once they adopt a gluten-free diet, they usually see gut healing, and major improvements in their symptoms. 
    CLASSIC CELIAC DISEASE SYMPTOMS
    Symptoms of celiac disease can range from the classic features, such as diarrhea, upset stomach, bloating, gas, weight loss, and malnutrition, among others.
    LESS OBVIOUS SYMPTOMS
    Celiac disease can often less obvious symptoms, such fatigue, vitamin and nutrient deficiencies, anemia, to name a few. Often, these symptoms are regarded as less obvious because they are not gastrointestinal in nature. You got that right, it is not uncommon for people with celiac disease to have few or no gastrointestinal symptoms. That makes spotting and connecting these seemingly unrelated and unclear celiac symptoms so important.
    NO SYMPTOMS
    Currently, most people diagnosed with celiac disease do not show symptoms, but are diagnosed on the basis of referral for elevated risk factors. 

    CELIAC DISEASE VS. GLUTEN INTOLERANCE
    Gluten intolerance is a generic term for people who have some sort of sensitivity to gluten. These people may or may not have celiac disease. Researchers generally agree that there is a condition called non-celiac gluten sensitivity. That term has largely replaced the term gluten-intolerance. What’s the difference between celiac disease and non-celiac gluten-sensitivity? 
    CELIAC DISEASE VS. NON-CELIAC GLUTEN SENSITIVITY (NCGS)
    Gluten triggers symptoms and immune reactions in people with celiac disease. Gluten can also trigger symptoms in some people with NCGS, but the similarities largely end there.

    There are four main differences between celiac disease and non-celiac gluten sensitivity:
    No Hereditary Link in NCGS
    Researchers know for certain that genetic heredity plays a major role in celiac disease. If a first-degree relative has celiac disease, then you have a statistically higher risk of carrying genetic markers DQ2 and/or DQ8, and of developing celiac disease yourself. NCGS is not known to be hereditary. Some research has shown certain genetic associations, such as some NCGS patients, but there is no proof that NCGS is hereditary. No Connection with Celiac-related Disorders
    Unlike celiac disease, NCGS is so far not associated with malabsorption, nutritional deficiencies, or a higher risk of autoimmune disorders or intestinal malignancies. No Immunological or Serological Markers
    People with celiac disease nearly always test positive for antibodies to gluten proteins. Researchers have, as yet, identified no such antobodies or serologic markers for NCGS. That means that, unlike with celiac disease, there are no telltale screening tests that can point to NCGS. Absence of Celiac Disease or Wheat Allergy
    Doctors diagnose NCGS only by excluding both celiac disease, an IgE-mediated allergy to wheat, and by the noting ongoing adverse symptoms associated with gluten consumption. WHAT ABOUT IRRITABLE BOWEL SYNDROME (IBS) AND IRRITABLE BOWEL DISEASE (IBD)?
    IBS and IBD are usually diagnosed in part by ruling out celiac disease. Many patients with irritable bowel syndrome are sensitive to gluten. Many experience celiac disease-like symptoms in reaction to wheat. However, patients with IBS generally show no gut damage, and do not test positive for antibodies to gliadin and other proteins as do people with celiac disease. Some IBS patients also suffer from NCGS.

    To add more confusion, many cases of IBS are, in fact, celiac disease in disguise.

    That said, people with IBS generally react to more than just wheat. People with NCGS generally react to wheat and not to other things, but that’s not always the case. Doctors generally try to rule out celiac disease before making a diagnosis of IBS or NCGS. 
    Crohn’s Disease and celiac disease share many common symptoms, though causes are different.  In Crohn’s disease, the immune system can cause disruption anywhere along the gastrointestinal tract, and a diagnosis of Crohn’s disease typically requires more diagnostic testing than does a celiac diagnosis.  
    Crohn’s treatment consists of changes to diet and possible surgery.  Up to 10% of Crohn's patients can have both of conditions, which suggests a genetic connection, and researchers continue to examine that connection.
    Is There a Connection Between Celiac Disease, Non-Celiac Gluten Sensitivity and Irritable Bowel Syndrome? Large Number of Irritable Bowel Syndrome Patients Sensitive To Gluten Some IBD Patients also Suffer from Non-Celiac Gluten Sensitivity Many Cases of IBS and Fibromyalgia Actually Celiac Disease in Disguise CELIAC DISEASE DIAGNOSIS
    Diagnosis of celiac disease can be difficult. 

    Perhaps because celiac disease presents clinically in such a variety of ways, proper diagnosis often takes years. A positive serological test for antibodies against tissue transglutaminase is considered a very strong diagnostic indicator, and a duodenal biopsy revealing villous atrophy is still considered by many to be the diagnostic gold standard. 
    But this idea is being questioned; some think the biopsy is unnecessary in the face of clear serological tests and obvious symptoms. Also, researchers are developing accurate and reliable ways to test for celiac disease even when patients are already avoiding wheat. In the past, patients needed to be consuming wheat to get an accurate test result. 
    Celiac disease can have numerous vague, or confusing symptoms that can make diagnosis difficult.  Celiac disease is commonly misdiagnosed by doctors. Read a Personal Story About Celiac Disease Diagnosis from the Founder of Celiac.com Currently, testing and biopsy still form the cornerstone of celiac diagnosis.
    TESTING
    There are several serologic (blood) tests available that screen for celiac disease antibodies, but the most commonly used is called a tTG-IgA test. If blood test results suggest celiac disease, your physician will recommend a biopsy of your small intestine to confirm the diagnosis.
    Testing is fairly simple and involves screening the patients blood for antigliadin (AGA) and endomysium antibodies (EmA), and/or doing a biopsy on the areas of the intestines mentioned above, which is still the standard for a formal diagnosis. Also, it is now possible to test people for celiac disease without making them concume wheat products.

    BIOPSY
    Until recently, biopsy confirmation of a positive gluten antibody test was the gold standard for celiac diagnosis. It still is, but things are changing fairly quickly. Children can now be accurately diagnosed for celiac disease without biopsy. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide.

    WHY A GLUTEN-FREE DIET?
    Currently the only effective, medically approved treatment for celiac disease is a strict gluten-free diet. Following a gluten-free diet relieves symptoms, promotes gut healing, and prevents nearly all celiac-related complications. 
    A gluten-free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. This is a difficult task as there are many hidden sources of gluten found in the ingredients of many processed foods. Still, with effort, most people with celiac disease manage to make the transition. The vast majority of celiac disease patients who follow a gluten-free diet see symptom relief and experience gut healing within two years.
    For these reasons, a gluten-free diet remains the only effective, medically proven treatment for celiac disease.
    WHAT ABOUT ENZYMES, VACCINES, ETC.?
    There is currently no enzyme or vaccine that can replace a gluten-free diet for people with celiac disease.
    There are enzyme supplements currently available, such as AN-PEP, Latiglutetenase, GluteGuard, and KumaMax, which may help to mitigate accidental gluten ingestion by celiacs. KumaMax, has been shown to survive the stomach, and to break down gluten in the small intestine. Latiglutenase, formerly known as ALV003, is an enzyme therapy designed to be taken with meals. GluteGuard has been shown to significantly protect celiac patients from the serious symptoms they would normally experience after gluten ingestion. There are other enzymes, including those based on papaya enzymes.

    Additionally, there are many celiac disease drugs, enzymes, and therapies in various stages of development by pharmaceutical companies, including at least one vaccine that has received financial backing. At some point in the not too distant future there will likely be new treatments available for those who seek an alternative to a lifelong gluten-free diet. 

    For now though, there are no products on the market that can take the place of a gluten-free diet. Any enzyme or other treatment for celiac disease is intended to be used in conjunction with a gluten-free diet, not as a replacement.

    ASSOCIATED DISEASES
    The most common disorders associated with celiac disease are thyroid disease and Type 1 Diabetes, however, celiac disease is associated with many other conditions, including but not limited to the following autoimmune conditions:
    Type 1 Diabetes Mellitus: 2.4-16.4% Multiple Sclerosis (MS): 11% Hashimoto’s thyroiditis: 4-6% Autoimmune hepatitis: 6-15% Addison disease: 6% Arthritis: 1.5-7.5% Sjögren’s syndrome: 2-15% Idiopathic dilated cardiomyopathy: 5.7% IgA Nephropathy (Berger’s Disease): 3.6% Other celiac co-morditities include:
    Crohn’s Disease; Inflammatory Bowel Disease Chronic Pancreatitis Down Syndrome Irritable Bowel Syndrome (IBS) Lupus Multiple Sclerosis Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Psoriasis Rheumatoid Arthritis Scleroderma Turner Syndrome Ulcerative Colitis; Inflammatory Bowel Disease Williams Syndrome Cancers:
    Non-Hodgkin lymphoma (intestinal and extra-intestinal, T- and B-cell types) Small intestinal adenocarcinoma Esophageal carcinoma Papillary thyroid cancer Melanoma CELIAC DISEASE REFERENCES:
    Celiac Disease Center, Columbia University
    Gluten Intolerance Group
    National Institutes of Health
    U.S. National Library of Medicine
    Mayo Clinic
    University of Chicago Celiac Disease Center

    Jefferson Adams
    Celiac.com 04/17/2018 - Could the holy grail of gluten-free food lie in special strains of wheat that lack “bad glutens” that trigger the celiac disease, but include the “good glutens” that make bread and other products chewy, spongey and delicious? Such products would include all of the good things about wheat, but none of the bad things that might trigger celiac disease.
    A team of researchers in Spain is creating strains of wheat that lack the “bad glutens” that trigger the autoimmune disorder celiac disease. The team, based at the Institute for Sustainable Agriculture in Cordoba, Spain, is making use of the new and highly effective CRISPR gene editing to eliminate the majority of the gliadins in wheat.
    Gliadins are the gluten proteins that trigger the majority of symptoms for people with celiac disease.
    As part of their efforts, the team has conducted a small study on 20 people with “gluten sensitivity.” That study showed that test subjects can tolerate bread made with this special wheat, says team member Francisco Barro. However, the team has yet to publish the results.
    Clearly, more comprehensive testing would be needed to determine if such a product is safely tolerated by people with celiac disease. Still, with these efforts, along with efforts to develop vaccines, enzymes, and other treatments making steady progress, we are living in exciting times for people with celiac disease.
    It is entirely conceivable that in the not-so-distant future we will see safe, viable treatments for celiac disease that do not require a strict gluten-free diet.
    Read more at Digitaltrends.com , and at Newscientist.com

    Jefferson Adams
    Celiac.com 04/16/2018 - A team of researchers recently set out to investigate whether alterations in the developing intestinal microbiota and immune markers precede celiac disease onset in infants with family risk for the disease.
    The research team included Marta Olivares, Alan W. Walker, Amalia Capilla, Alfonso Benítez-Páez, Francesc Palau, Julian Parkhill, Gemma Castillejo, and Yolanda Sanz. They are variously affiliated with the Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardin, Paterna, Valencia, Spain; the Gut Health Group, The Rowett Institute, University of Aberdeen, Aberdeen, UK; the Genetics and Molecular Medicine Unit, Institute of Biomedicine of Valencia, National Research Council (IBV-CSIC), Valencia, Spain; the Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire UK; the Hospital Universitari de Sant Joan de Reus, IISPV, URV, Tarragona, Spain; the Center for regenerative medicine, Boston university school of medicine, Boston, USA; and the Institut de Recerca Sant Joan de Déu and CIBERER, Hospital Sant Joan de Déu, Barcelona, Spain
    The team conducted a nested case-control study out as part of a larger prospective cohort study, which included healthy full-term newborns (> 200) with at least one first relative with biopsy-verified celiac disease. The present study includes 10 cases of celiac disease, along with 10 best-matched controls who did not develop the disease after 5-year follow-up.
    The team profiled fecal microbiota, as assessed by high-throughput 16S rRNA gene amplicon sequencing, along with immune parameters, at 4 and 6 months of age and related to celiac disease onset. The microbiota of infants who remained healthy showed an increase in bacterial diversity over time, especially by increases in microbiota from the Firmicutes families, those who with no increase in bacterial diversity developed celiac disease.
    Infants who subsequently developed celiac disease showed a significant reduction in sIgA levels over time, while those who remained healthy showed increases in TNF-α correlated to Bifidobacterium spp.
    Healthy children in the control group showed a greater relative abundance of Bifidobacterium longum, while children who developed celiac disease showed increased levels of Bifidobacterium breve and Enterococcus spp.
    The data from this study suggest that early changes in gut microbiota in infants with celiac disease risk could influence immune development, and thus increase risk levels for celiac disease. The team is calling for larger studies to confirm their hypothesis.
    Source:
    Microbiome. 2018; 6: 36. Published online 2018 Feb 20. doi: 10.1186/s40168-018-0415-6