• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,265
    Total Members
    3,093
    Most Online
    Mrs p
    Newest Member
    Mrs p
    Joined
  • 0

    Aberrant Epigenetic Regulation Triggers Intestinal Symptoms in Celiac Disease


    Jefferson Adams
    Image Caption: Researchers discover aberrant epigenetic regulation behind the intestinal symptoms in celiac disease. Photo: CC--EveryCarListed P

    Celiac.com 10/11/2016 - Celiac disease is an autoimmune disease in genetically susceptible individuals and is triggered by adverse immune reactions to gluten, a protein found in wheat and other grains.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Researchers led by a research group at Finland's University of Tampere, led by Keijo Viiri, PhD, recently discovered a mechanism that triggers aberrant features in celiac disease and colorectal cancer. Disturbances in this mechanism seem to trigger certain symptoms celiac disease, and possibly in colorectal cancer.

    The research team's recent study offers new details on the pathogenesis of the differentiation defect of the epithelium in the small intestine in celiac disease. When people with celiac disease eat gluten, they suffer intestinal mucosal damage with villus atrophy and crypt hyperplasia. At the cellular level, epithelial cells are less differentiated and hyper-proliferative leading to the malabsorption of nutrients. Researchers discovered that a certain epigenetic mechanism, called Polycomb, governs the homeostasis between the intestinal stem cells in the crypt and the differentiated epithelium in the villi. Polycomb acts by silencing genes epigenetically by methylating histone proteins that are packing the DNA.

    "Polycomb is well-known for its function to regulate embryonal development. We discovered that Polycomb is also able to regulate the homeostasis of the small intestine in adults. The regulation of intestinal homeostasis is a tremendous task as the epithelium of the intestine needs to be replenished completely every 4-5 days," says Academy of Finland Postdoctoral Researcher and Principal Investigator Keijo Viiri.

    This study demonstrates that in people with celiac disease, dietary gluten triggers excessive activity of Polycomb leading to the aberrant silencing of genes necessary for the differentiation of villus epithelium and to the concomitant differentiation defect in celiac disease. Moreover, the study demonstrates that Polycomb target genes are also dysregulated in colorectal cancer, which suggests that aberrant Polycomb activity is common in intestinal diseases entailing a differentiation defect on the intestinal epithelium.

    From a clinical point of view, this work provides new insight into the pathogenesis of the intestinal damage in celiac disease and provides diagnostic markers for the disease.

    Since Polycomb regulates only genes imperative for development, this work is also instrumental to further understand the biology of the intestinal homeostasis.

    Source:

    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   10 Members, 0 Anonymous, 1,073 Guests (See full list)

  • Related Articles

    Jefferson Adams
    Celiac.com 08/24/2016 - Although serological tests are useful for identifying celiac disease, it is well known that a small minority of celiacs are seronegative, and show no blood markers for celiac disease. A team of researchers wanted to define the prevalence and features of seronegative compared to seropositive celiac disease, and to establish whether celiac disease is a common cause of seronegative villous atrophy.
    The research team included U Volta, G Caio, E Boschetti, F Giancola, KJ Rhoden, E Ruggeri, P Paterini, and R De Giorgio. They are all affiliated with the Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Italy. They looked at clinical, histological and laboratory findings from 810 celiac disease diagnoses, and retrospectively characterized seronegative patients.
    Of the original 810 patients, they found fourteen patients who fulfilled diagnostic criteria for seronegative celiac disease, which were antibody negativity, villous atrophy, HLA-DQ2/-DQ8 positivity and clinical/histological improvement after gluten free diet. Their review showed that, compared to seropositive patients, seronegative celiac patients showed a significantly higher median age at diagnosis and a higher prevalence of classical phenotype, such as malabsorption, along with autoimmune disorders and severe villous atrophy.
    The most common diagnosis in the 31 cases with seronegative flat mucosa was celiac disease at 45%, along with Giardiasis at 20%, common variable immunodeficiency at 16%, and autoimmune enteropathy at 10%.
    Although rare, seronegative celiac disease is the most common cause of seronegative villous atrophy with a high median age at diagnosis; a close association with malabsorption and flat mucosa; and a high prevalence of autoimmune disorders.
    Physicians treating seronegative villous atrophy should consider seronegative celiac disease as a possibility.
    Source:
    Dig Liver Dis. 2016 Jun 11. pii: S1590-8658(16)30460-1. doi: 10.1016/j.dld.2016.05.024.

    Jefferson Adams
    Celiac.com 07/28/2016 - Celiac disease is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Researchers know that innate immunity plays a role in triggering celiac disease, but they don't understand the connection very well at all.
    Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo.
    The research team included RE Araya, MF Gomez Castro, P Carasi, JL McCarville, J Jury, AM Mowat, EF Verdu, and FG Chirdo. They are variously affiliated with the Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina; the Catedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina; the Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; the Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom; and with the Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
    Their team observed that introduction of p31-43 into the gut of normal mice causes structural changes in the small intestinal mucosa consistent with those seen in celiac disease, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by co-administration of the TLR3 agonist polyinosinic:polycytidylic acid.
    Together, these results indicate that gliadin peptide p31-43 activates celiac-related innate immune pathways in vivo, such as IFN-dependent inflammation.
    These findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of celiac disease, meaning that certain viral infections may pave the way for celiac disease to develop.
    Source:
    Am J Physiol Gastrointest Liver Physiol. 2016 Jul 1;311(1):G40-9. doi: 10.1152/ajpgi.00435.2015. Epub 2016 May 5.

    Jefferson Adams
    Celiac.com 08/22/2016 - Many doctors hear from celiac patients who suffer from persistent symptoms despite a long-term gluten-free diet. A research team recently set out to investigate the prevalence and severity of these symptoms in patients with variable duration of a gluten-free diet.
    The research team included Pilvi Laurikka, Teea Salmi, Pekka Collin, Heini Huhtala, Markku Mäki, Katri Kaukinen, and Kalle Kurppa. They are variously affiliated with the School of Medicine, University of Tampere, Tampere 33014, Finland, the Department of Internal Medicine, the Department of Dermatology, the Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, University of Tampere, Tampere 33014, Finland, and the Tampere School of Health Sciences, at the University of Tampere in Tampere 33014, Finland, the Centre for Child Health Research at the University of Tampere and Tampere University Hospital, Tampere 33014, Finland.
    Altogether, the team classified 856 patients into three groups: 128 untreated patients, 93 on a short-term gluten-free diet of 1–2 years, and 635 patients on a long-term gluten-free diet of 3 years or longer. They conducted analyses of clinical and histological data and dietary adherence. They also included a control group of 166 healthy subjects.
    The team evaluated symptoms according to the validated GSRS questionnaire. They compared severity of symptoms against severity in cases of peptic ulcer, reflux disease, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS).
    Altogether, 93% of the short-term and 94% of the long-term treated patients had a strict gluten-free diet and recovered mucosa. Untreated patients had more diarrhea, indigestion and abdominal pain than those on a gluten-free diet and controls.
    Their results showed no differences in symptoms between the short- and long-term gluten-free diet groups, though both showed poorer GSRS total score than control subjects, with p = 0.03 and p = 0.05, respectively. Patients treated 1–2 years had more diarrhea (p = 0.03) and those treated >10 years had more cases of reflux (p = 0.04) than control subjects.
    Meanwhile, long-term treated celiac patients showed relatively mild symptoms compared with other gastrointestinal diseases.
    Based on these results, most celiac patients showed a good response to gluten-free diet, which continued in long-term follow-up, although not all patients see their health return to that of non-celiac individuals.
    Source:
    Nutrients 2016, 8(7), 429. doi:10.3390/nu8070429

    Jefferson Adams
    Celiac.com 09/16/2016 - Great news about poop transplants: They work! And now doctors kind of understand how and why they work. This is good news about a humor provoking, but very serious matter.
    Clostridium difficile infection is one of the most common health care-associated infections, and up to 40% of patients suffer from recurrence of disease following standard antibiotic therapy. C. difficile infection has proven to be very difficult to treat. Fecal microbiota transplantation (FMT) has been successfully used to treat recurrent C. difficile infection. Doctors hypothesize that FMT promotes recovery of a microbiota capable of colonization resistance to C. difficile. However, they didn't really understand how it worked.
    Recently, a research team investigated changes in the fecal microbiota structure following FMT in patients with recurrent C. difficile infection, and imputed a hypothetical functional profile based on the 16S rRNA profile, using a predictive metagenomic tool. After FMT, they also noted increased relative abundance of Bacteroidetes and decreased abundance of Proteobacteria.
    The research team included Anna M. Seekatz, Johannes Aas, Charles E. Gessert, Timothy A. Rubin, Daniel M. Saman, Johan S. Bakken, and Vincent B. Young. They are variously affiliated with the Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA; Essentia Health, Department of Gastroenterology, Duluth, Minnesota, USA; Essentia Institute of Rural Health, Duluth, Minnesota, USA; and St. Luke's Hospital, Section of Infectious Diseases, Duluth, Minnesota, USA.
    Their results showed that, after transplantation, fecal microbiota of recipients was more diverse, and more similar to the donor profile, than the microbiota before transplantation. Additionally, they observed differences in the imputed metagenomic profile. In particular, amino acid transport systems were over-represented in samples collected prior to transplantation.
    These results Indicate that functional changes accompany microbial structural changes following this therapy. Further identification of the specific microbiota, and functions that promote colonization resistance, may help to create better treatment methods for C. difficile infection.
    Source:
    mBio. 2014 May-Jun; 5(3): e00893-14. Published online 2014 Jun 17. doi: 10.1128/mBio.00893-14. PMCID: PMC4068257

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023

    Jefferson Adams
    Celiac.com 06/13/2018 - There have been numerous reports that olmesartan, aka Benicar, seems to trigger sprue‐like enteropathy in many patients, but so far, studies have produced mixed results, and there really hasn’t been a rigorous study of the issue. A team of researchers recently set out to assess whether olmesartan is associated with a higher rate of enteropathy compared with other angiotensin II receptor blockers (ARBs).
    The research team included Y.‐H. Dong; Y. Jin; TN Tsacogianis; M He; PH Hsieh; and JJ Gagne. They are variously affiliated with the Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School in Boston, MA, USA; the Faculty of Pharmacy, School of Pharmaceutical Science at National Yang‐Ming University in Taipei, Taiwan; and the Department of Hepato‐Gastroenterology, Chi Mei Medical Center in Tainan, Taiwan.
    To get solid data on the issue, the team conducted a cohort study among ARB initiators in 5 US claims databases covering numerous health insurers. They used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for enteropathy‐related outcomes, including celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy. In all, they found nearly two million eligible patients. 
    They then assessed those patients and compared the results for olmesartan initiators to initiators of other ARBs after propensity score (PS) matching. They found unadjusted incidence rates of 0.82, 1.41, 1.66 and 29.20 per 1,000 person‐years for celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy respectively. 
    After PS matching comparing olmesartan to other ARBs, hazard ratios were 1.21 (95% CI, 1.05‐1.40), 1.00 (95% CI, 0.88‐1.13), 1.22 (95% CI, 1.10‐1.36) and 1.04 (95% CI, 1.01‐1.07) for each outcome. Patients aged 65 years and older showed greater hazard ratios for celiac disease, as did patients receiving treatment for more than 1 year, and patients receiving higher cumulative olmesartan doses.
    This is the first comprehensive multi‐database study to document a higher rate of enteropathy in olmesartan initiators as compared to initiators of other ARBs, though absolute rates were low for both groups.
    Source:
    Alimentary Pharmacology & Therapeutics

    Jefferson Adams
    Celiac.com 06/12/2018 - A life-long gluten-free diet is the only proven treatment for celiac disease. However, current methods for assessing gluten-free diet compliance are lack the sensitivity to detect occasional dietary transgressions that may cause gut mucosal damage. So, basically, there’s currently no good way to tell if celiac patients are suffering gut damage from low-level gluten contamination.
    A team of researchers recently set out to develop a method to determine gluten intake and monitor gluten-free dietary compliance in patients with celiac disease, and to determine its correlation with mucosal damage. The research team included ML Moreno, Á Cebolla, A Muñoz-Suano, C Carrillo-Carrion, I Comino, Á Pizarro, F León, A Rodríguez-Herrera, and C Sousa. They are variously affiliated with Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain; Biomedal S.L., Sevilla, Spain; Unidad Clínica de Aparato Digestivo, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Celimmune, Bethesda, Maryland, USA; and the Unidad de Gastroenterología y Nutrición, Instituto Hispalense de Pediatría, Sevilla, Spain.
    For their study, the team collected urine samples from 76 healthy subjects and 58 patients with celiac disease subjected to different gluten dietary conditions. To quantify gluten immunogenic peptides in solid-phase extracted urines, the team used a lateral flow test (LFT) with the highly sensitive and specific G12 monoclonal antibody for the most dominant GIPs and an LFT reader. 
    They detected GIPs in concentrated urines from healthy individuals previously subjected to gluten-free diet as early as 4-6 h after single gluten intake, and for 1-2 days afterward. The urine test showed gluten ingestion in about 50% of patients. Biopsy analysis showed that nearly 9 out of 10 celiac patients with no villous atrophy had no detectable GIP in urine, while all patients with quantifiable GIP in urine showed signs of gut damage.
    The ability to use GIP in urine to reveal gluten consumption will likely help lead to new and non-invasive methods for monitoring gluten-free diet compliance. The test is sensitive, specific and simple enough for clinical monitoring of celiac patients, as well as for basic and clinical research applications including drug development.
    Source:
    Gut. 2017 Feb;66(2):250-257.  doi: 10.1136/gutjnl-2015-310148.