• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    72,029
    Total Members
    3,093
    Most Online
    Sharon Rye
    Newest Member
    Sharon Rye
    Joined
  • Announcements

    • admin

      Frequently Asked Questions About Celiac Disease   04/07/2018

      This Celiac.com FAQ on celiac disease will guide you to all of the basic information you will need to know about the disease, its diagnosis, testing methods, a gluten-free diet, etc.   Subscribe to Celiac.com's FREE weekly eNewsletter   What are the major symptoms of celiac disease? Celiac Disease Symptoms What testing is available for celiac disease?  Celiac Disease Screening Interpretation of Celiac Disease Blood Test Results Can I be tested even though I am eating gluten free? How long must gluten be taken for the serological tests to be meaningful? The Gluten-Free Diet 101 - A Beginner's Guide to Going Gluten-Free Is celiac inherited? Should my children be tested? Ten Facts About Celiac Disease Genetic Testing Is there a link between celiac and other autoimmune diseases? Celiac Disease Research: Associated Diseases and Disorders Is there a list of gluten foods to avoid? Unsafe Gluten-Free Food List (Unsafe Ingredients) Is there a list of gluten free foods? Safe Gluten-Free Food List (Safe Ingredients) Gluten-Free Alcoholic Beverages Distilled Spirits (Grain Alcohols) and Vinegar: Are they Gluten-Free? Where does gluten hide? Additional Things to Beware of to Maintain a 100% Gluten-Free Diet What if my doctor won't listen to me? An Open Letter to Skeptical Health Care Practitioners Gluten-Free recipes: Gluten-Free Recipes
  • 0

    ASSESSING CELIAC DISEASE IN PATIENTS WITH POSITIVE TISSUE TRANSGLUTAMINASE ANTIBODIES AND NEGATIVE ENDOMYSIAL ANTIBODIES


    Jefferson Adams

    Celiac.com 06/29/2012 - A group of researchers recently set out to study cases of positive tissue transglutaminase antibodies with negative endomysial antibodies to determine whether or not such cases amount to celiac disease.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    The team included Thomas Hornung; Pavel Gordins; Clare Parker; and Nicholas Thompson. They are variously affiliated with the departments of Gastroenterology, and Immunology at the Northern Deanery of Newcastle upon Tyne, and with the department of Gastroenterology at Freeman Hospital in Newcastle upon Tyne in the UK.

    Photo: CC--Valerie_EverettThe most sensitive and specific blood tests for diagnosing celiac disease are those that detect immunoglobulin A (IgA) antibodies against human tissue transglutaminase (tTGA) enzyme, and those that measure aspects of connective tissue covering individual smooth muscle fibers, endomysial antibodies (EMA).

    Because of the high sensitivity (up to 98%) and high specificity (around 96%) reported for the tTGA assay, detection of tTGA is currently the primary blood test used in screening for celiac disease.

    The tTGA test also has a high negative predictive value approaching 100%, which makes it an excellent test for excluding celiac disease in both high and low risk groups. In contrast, positive predictive value of the tTGA test is rather poor with values between 28.6% and 60.2% being reported in several studies.

    EMA, on the other hand, has extremely high specificity values close to 100% and positive predictive value values approaching 80%.[5 10] However, compared with tTGA, EMA has lower sensitivity, usually under 90%.

    This being the case, the present standard celiac disease screening strategy is to first use tTGA, and then confirm positive results using EMA. However, doing it this way, doctors often end up with a group of patients who show divergent test results.

    For their study, the researchers wanted to gauge the percentage of patients with positive tTGA and negative EMA, but who were confirmed with celiac disease upon biopsy, and to identify factors in these patients that may help to increase diagnostic accuracy in such patients.

    The research team identified 125 consecutive patients with positive tTGA and negative EMA, who subsequently underwent endoscopy with at least two biopsies from the second part of the duodenum.

    The team charted any tTGA result over 15 U/ml as positive. They excluded any patients with known celiac disease at the time of testing.

    They then reviewed patient notes to assess indications for celiac disease serological screening, including the presence of iron deficiency anaemia, and symptoms such as diarrhea or weight loss, and family history of celiac disease. They defined diarrhea as a bowel frequency of more than three times a day.

    They then assessed histological evidence of celiac disease based on subsequent duodenal biopsies, plus Marsh grading. In cases where patient histology was unclear, they relied on the clinical assessment of a consulting gastroenterologist. Unclear histology included minimal/mild increase in intraepithelial lymphocytes of not more than 30 per 100 enterocytes and without villous atrophy, plus mild villous blunting with no increase in intraepithelial lymphocytes.

    They then categorized patients as either celiac disease negative, or celiac disease positive. Patients with no histological evidence of celiac disease on duodenal biopsies or equivocal histology plus overall clinical impression of celiac disease absence were categorized as celiac disease negative. Patients with histological evidence of celiac disease on duodenal biopsies or equivocal histology plus overall clinical impression of celiac disease presence were categorized as celiac disease positive.

    To measure IgA anti-tTGA antibody the team used a commercially available enzyme linked immunosorbent assay called Aeskulisa, manufactured by Aesku Diagnostics GmbH in Wendelsheim, Germany.

    To detect IgA anti-EMA with the standard immunofluorescent method, they used commercial slides of monkey oesophagus sections (Euroimmun, Euroimmun AG, Lübeck, Germany). They used conjugated sheep antihuman IgA as a secondary antibody, relying on a test manufactured by Instrumentation Laboratory UK Ltd., in Warrington, UK.

    Overall, the team categorized 113 patients (90.4%) as celiac disease negative. Of these, 102 patients had no histological features of celiac disease, while 11 patients had unclear histology plus an overall clinical impression of not having celiac disease.

    They categorized twelve patients (9.6%) as celiac disease positive. Of these, 10 patients had positive histology, and two patients had unclear histology plus an overall clinical impression of having celiac disease.

    Of those with positive histology, 17% were Marsh grade I, 8% were Marsh grade II, 33% were Marsh grade IIIa, 17% were Marsh grade IIIb and 25% were Marsh grade IIIc. Those with celiac disease were more likely to be older and to have a higher tTGA level. The groups showed no difference in any clinical parameter.

    Source:


    Image Caption: Photo: CC--Valerie_Everett
    0


    User Feedback

    Recommended Comments

    Guest Kevin

    Posted

    My tissue transglutaminase test was positive and all other blood tests and the endoscopy were negative. My doctor said because the tissue transglutaminase was the most accurate that I definitely had celiac disease. Are you saying that I might not actually have it?! After going gluten-free I never had a point where I felt way better like other people with celiac disease I have talked to when they went gluten-free.

    Share this comment


    Link to comment
    Share on other sites
    My tissue transglutaminase test was positive and all other blood tests and the endoscopy were negative. My doctor said because the tissue transglutaminase was the most accurate that I definitely had celiac disease. Are you saying that I might not actually have it?! After going gluten-free I never had a point where I felt way better like other people with celiac disease I have talked to when they went gluten-free.

    Hi Kevin, did you ever find out anything more about your situation? I got a low positive tTGA test and a negative EMA but was also diagnosed as celiac. Did you have a biopsy done to confirm? Would be interested in hearing your experience and how you are doing now.

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoticons maximum are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   10 Members, 1 Anonymous, 507 Guests (See full list)

  • Related Articles

    admin

    The following abstract was submitted to celiac.com directly by William Dickey, Ph.D., a leading celiac disease researcher and gastroenterologist who practices at Altnagelvin Hospital, Londonderry, Northern Ireland.
    Scandinavian Journal of Gastroenterology 2005; 40: 1240-3.
    Dickey W, Hughes DF, McMillan SA.
    Celiac.com 09/27/2005 - What does a positive endomysial antibody (EmA) test mean if the biopsy does not show villous atrophy? The authors studied 35 patients where this was the case. In the authors practice, these patients account for 10% of all EmA positives.
    Firstly, the lack of villous atrophy did not necessarily mean a normal biopsy: 14 patients had excess inflammatory cells (lymphocytes) consistent with a mild abnormality of gluten sensitivity.
    Secondly, many of these patients had typical celiac features: twelve had a family history of celiac, five had dermatitis herpetiformis and thirteen had osteopenia or osteoporosis on DEXA scan.
    After discussion, 27 patients opted to take a gluten-free diet from the first biopsy: 26 of these had clinical improvement. Seven of eight patients who persisted with a normal diet developed villous atrophy on follow-up biopsies.
    The authors conclude that a positive EmA result indicates gluten sensitivity even if biopsies do not show villous atrophy. While a biopsy remains important as a baseline reference, these patients should be offered a gluten-free diet to allow clinical improvement and prevent the development of villous atrophy. There may be no such thing as a "false positive" EmA, although the authors emphasise that the same conclusion cannot yet be applied to tissue transglutaminase antibody results.

    Jefferson Adams
    More and more people with celiac disease present atypical symptoms that are clinically indistinguishable from other gastrointestinal disorders. A new study shows that upwards of 4% of people with generalized gastrointestinal complaints  show elevated celiac disease antibodies when screened.
    A team of researchers recently set out to assess rates of celiac disease in patients with gastrointestinal symptoms, and to catalog the common manifestations of atypical expressions of celiac disease. The research team was made up of Mohammad Rostami Nejad, Kamran Rostami, Mohamad Amin Pourhoseingholi, Ehsan Nazemalhosseini Mojarad, Manijeh Habibi, Hossein Dabiri, and Mohammad Reza Zali.
    The team designed and executed a cross sectional study that included 5,176 individuals chosen randomly from self-referred patients within a primary care setting in Tehran province from 2006-2007.
    In all, 670 of the 5176, or 13% of patients self-referred to a general practitioner suffered from gastrointestinal complaints.  All 670 subjects with gastrointestinal symptoms underwent celiac blood tests, including total immunoglobulin A (IgA) and anti-tissue transglutaminase (tTG) antibodies. Individuals showing IgA deficiency underwent screening for IgG tTG.
    Of the 670 investigated for gastrointestinal complaints, a total of 22 patients, 17 women and 5 men, showed positive anti-tTG results (95% CI: 1.70-4.30). Another 8/670 showed IgA deficiency, with 3 of those 8 subjects showing positive IgG tTG.  Dyspepsia (indigestion) was the chief complaint in 25 patients withpositive blood tests and cases that were analogous to the rest of thesubjects.
    In all, 3.3% of serologically screened samples excluding IgA-deficient showed celiac disease antibodies, compared to 3.7% of those IgA-deficient subjects with positive tTG-IgG.
    Generalized gastrointestinal complaints are a common indication of atypical celiac disease. This study points to high rates of celiac disease antibodies among patients with generalized gastrointestinal symptoms (3.7%).
    Clinicians and patients will benefit from greater vigilance regarding atypical presentation of celiac disease and its association with generalized gastrointestinal symptoms.
    Source:
    Journal of Gastrointestinal Liver Disease - September 2009 Vol.18 No 3, 285-291


    Jefferson Adams
    Celiac.com 06/17/2010 - In a recent letter to the editors of Clinical Chemistry, Carolina Arguelles-Grande, Gary L. Norman, Govind Bhagat, and Peter H. R. Green describe how hemolysis interferes with the detection of anti–tissue transglutaminase antibodies in celiac disease.
    They are variously affiliated with the Departments of Medicine and Pathology at Columbia University's College of Physicians and Surgeons in New York, and with INOVA Diagnostics, Inc., in San Diego, CA.
    Using human recombinant or erythrocyte tTG-IgA–based ELISA assays to measure anti–tissue transglutaminase (tTG) antibodies is one of the favored methods for diagnosing celiac disease.
    However, assessments of various tTG kits have shown variations in sensitivity, which has raised some alarms among clinicians. Many clinicians suspect that hemolysis plays a role in these variations.
    To assess the effect of hemolysis on tTG-IgA titers, the team looked at blood samples from 9 patients with biopsy-confirmed, active celiac disease who chose to participate in the study.
    They split the samples into 3 groups, with three samples in each group. They divided the samples according to tTG-IgA concentration after thawing. They categorized the samples as high titer (>185 U), intermediate titer (100–140 U), and borderline titer (20–50 U).
    The team hemolyzed a whole-blood sample taken from 1 tTG/DGP-seronegative patient. They measured hemoglobin in the sample at 149 g/L of hemoglobin. They repeatedly froze and thawed the sample until 90% of cells hemolyzed. They then serially diluted in ratios of 1:2, 1:5, 1:10, 1:50, 1:100, 1:500 in PBS to obtain hemoglobin concentrations of 67.1, 26.8, 13.4, 2.7, 1.3, and 0.27 g/L, respectively. They then added to each sample at a 1:1 ratio.
    For the tTG sequestration assessment, the team added human recombinant tTG from Diarect AG for final concentrations of 0.04, 0.02, 0.01, and 0.002 g/L. The team used undiluted serum as the baseline titer reference, and serum diluted 1:2 in PBS as a control.
    To measure antibody titers, they used 2 ELISA test kits: QUANTA LiteTM h-tTG IgA (human erythrocyte tTG-IgA based) and Gliadin II (DGP-IgA based) from INOVA Diagnostics, Inc.  The team conducted blinded screens per manufacturer instructions, and compared the results for each group using the Mann–Whitney U-test, with P values <0.05 considered significant.
    They discovered that adding hemolyzed blood (HB) to sera of patients with active celiac disease lowered levels of anti-tTG, with intermediate- and borderline-titer groups seeing the largest reduction. Anti-DGP antibodies remained unchanged.
    Total average titer loss of anti-tTG vs anti-DGP antibodies was 36% vs 13% in the high-titer groups (P 0.026), 45% vs 3% (P = 0.026) in the intermediate titer groups, and 51% vs 2% in the borderline-titer groups (P = 0.0022)
    The team also found that adding ever higher concentrations of hemoglobin lowered the titers of anti-tTG, but not of anti-DGP, causing negative anti-tTG results in samples with low tTG antibody concentrations.
    The anti-tTG titer decreased 2%–65% in the high-titer groups, 1%–81% in the intermediate-titer groups, and 16%–74% in the borderline-titer group at hemoglobin concentrations of 0.3– 67.1 g/L.
    This compares with a decrease in anti-DGP titers of 10%–16% for high-titer groups, 4%–8% for intermediate-titer groups, and 7%–3% for the borderline-titer groups at hemoglobin concentrations of 0.3– 67.1 g/L.
    In all groups, tTG titer reduction was greater at higher concentrations of HB/HGB and gradually recovered as the red tint started to vanish at about 13 g/L of HGB, until complete visual disappearance at about 0.3g/L HGB).
    In the intermediate- and borderline-titer groups, titer reduction induced false-negative results at 20 U, with the anti-tTG, but not anti-DGP assays for HGB concentrations  ≥13 or ≥0.3 g/L, respectively.
    They also found that raising concentrations of exogenous tTG (recombinant human tTG) to intermediate-titer blood samples triggered a significant reduction in anti-tTG assay titers similar to that seen with hemoglobin (range, 32%–82%; mean, 69%), as compared with that of anti-DGP titers (mean, 18%; range, 1%–38%; P = 0.0159).
    Hemolysis is clearly indicated by a red tint in serum plasma, and is one of the most common reasons for labs to reject specimens. Visible hemolysis starts at about 0.5 g/L of hemoglobin and is obvious above 1.3 g/L of hemoglobin.
    The results show that that hemolysis does interfere with the detection of anti-tTG antibodies, and that visibly hemolyzed blood samples generate false-negative anti–tTG-IgA results.
    These findings may explain false-negative tests for celiac disease that arise when clinicians use tTG-IgA assays. They encourage clinicians and laboratories to take measures to avoid hemolysis. If they notice hemolyzed blood samples, they should alert physicians so new blood samples can be taken. If redrawing samples is not possible, hemolyzed samples should be measured for anti-DGP antibodies.
    Clinicians who suspect hemolysis should consider using anti-DGP serological tests, which are not influenced by hemolysis.
    Source:

     Clinical Chemistry. 2010;56:1034-1036. DOI: 10.1373/clinchem.2010.143263

    Jefferson Adams
    Celiac.com 04/22/2014 - Blood tests are highly valuable for diagnosing celiac disease. However, their role in gauging mucosal healing in celiac children who have adopted gluten-free diets is unclear.
    A team of researchers recently set out to compare the performance of antibody tests in predicting small-intestinal mucosal status in diagnosis and follow-up of pediatric celiac disease.
    The research team included Edith Vécsei, Stephanie Steinwendner, Hubert Kogler, Albina Innerhofer, Karin Hammer, Oskar A Haas, Gabriele Amann, Andreas Chott, Harald Vogelsang, Regine Schoenlechner, Wolfgang Huf, and Andreas Vécsei.
    They are variously affiliated with the Clinical Department of Pathology and the Department of Internal Medicine III of the Division for Gastroenterology and Hepatology, the Center for Medical Physics and Biomedical Engineering, the Department of Pediatrics and Pediatric Gastroenterology of St. Anna Children's Hospital, all at Medical University Vienna, and with the Institute of Pathology and Microbiology, Wilhelminenspital in Vienna, and with the Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences in Vienna, Austria.
    The team conducted a prospective cohort study at a tertiary-care center, where 148 children received biopsies either for symptoms ± positive celiac disease antibodies (group A; n = 95) or following up celiac disease diagnosed ≥ 1 year before study enrollment (group B; n = 53).
    Using biopsy (Marsh ≥ 2) as the criterion standard, they calculated areas under ROC curves (AUCs) and likelihood-ratios to gauge the performance of antibody tests against tissue transglutaminase (TG2), deamidated gliadin peptide (DGP) and endomysium (EMA).
    They found that AUC values were higher when tests were used for celiac disease diagnosis compared with follow-up: 1 vs. 0.86 (P = 0.100) for TG2-IgA, 0.85 vs. 0.74 (P = 0.421) for TG2-IgG, 0.97 vs. 0.61 (P = 0.004) for DPG-IgA, and 0.99 vs. 0.88 (P = 0.053) for DPG-IgG, respectively.
    Empirical power was 85% for the DPG-IgA comparison, and on average 33% (range 13–43) for the non-significant comparisons. A total of 88.7% of group B children showed mucosal healing, at an average of 2.2 years after primary diagnosis.
    Only the negative likelihood-ratio of EMA was low enough (0.097) to effectively rule out persistent mucosal injury. However, out of 12 EMA-positive children with mucosal healing, 9 subsequently tested EMA-negative.
    Among the celiac disease antibodies examined, negative EMA most reliably predict mucosal healing. In general, however, antibody tests, especially DPG-IgA, are of limited value in predicting the mucosal status in the early years after celiac diagnosis, though they may do better over a longer time.
    Source:
    BMC Gastroenterology 2014, 14:28. doi:10.1186/1471-230X-14-28

  • Recent Articles

    Connie Sarros
    Celiac.com 04/21/2018 - Dear Friends and Readers,
    I have been writing articles for Scott Adams since the 2002 Summer Issue of the Scott-Free Press. The Scott-Free Press evolved into the Journal of Gluten Sensitivity. I felt honored when Scott asked me ten years ago to contribute to his quarterly journal and it's been a privilege to write articles for his publication ever since.
    Due to personal health reasons and restrictions, I find that I need to retire. My husband and I can no longer travel the country speaking at conferences and to support groups (which we dearly loved to do) nor can I commit to writing more books, articles, or menus. Consequently, I will no longer be contributing articles to the Journal of Gluten Sensitivity. 
    My following books will still be available at Amazon.com:
    Gluten-free Cooking for Dummies Student's Vegetarian Cookbook for Dummies Wheat-free Gluten-free Dessert Cookbook Wheat-free Gluten-free Reduced Calorie Cookbook Wheat-free Gluten-free Cookbook for Kids and Busy Adults (revised version) My first book was published in 1996. My journey since then has been incredible. I have met so many in the celiac community and I feel blessed to be able to call you friends. Many of you have told me that I helped to change your life – let me assure you that your kind words, your phone calls, your thoughtful notes, and your feedback throughout the years have had a vital impact on my life, too. Thank you for all of your support through these years.

    Jefferson Adams
    Celiac.com 04/20/2018 - A digital media company and a label data company are teaming up to help major manufacturers target, reach and convert their desired shoppers based on dietary needs, such as gluten-free diet. The deal could bring synergy in emerging markets such as the gluten-free and allergen-free markets, which represent major growth sectors in the global food industry. 
    Under the deal, personalized digital media company Catalina will be joining forces with Label Insight. Catalina uses consumer purchases data to target shoppers on a personal base, while Label Insight works with major companies like Kellogg, Betty Crocker, and Pepsi to provide insight on food label data to government, retailers, manufacturers and app developers.
    "Brands with very specific product benefits, gluten-free for example, require precise targeting to efficiently reach and convert their desired shoppers,” says Todd Morris, President of Catalina's Go-to-Market organization, adding that “Catalina offers the only purchase-based targeting solution with this capability.” 
    Label Insight’s clients include food and beverage giants such as Unilever, Ben & Jerry's, Lipton and Hellman’s. Label Insight technology has helped the Food and Drug Administration (FDA) build the sector’s very first scientifically accurate database of food ingredients, health attributes and claims.
    Morris says the joint partnership will allow Catalina to “enhance our dataset and further increase our ability to target shoppers who are currently buying - or have shown intent to buy - in these emerging categories,” including gluten-free, allergen-free, and other free-from foods.
    The deal will likely make for easier, more precise targeting of goods to consumers, and thus provide benefits for manufacturers and retailers looking to better serve their retail food customers, especially in specialty areas like gluten-free and allergen-free foods.
    Source:
    fdfworld.com

    Jefferson Adams
    Celiac.com 04/19/2018 - Previous genome and linkage studies indicate the existence of a new disease triggering mechanism that involves amino acid metabolism and nutrient sensing signaling pathways. In an effort to determine if amino acids might play a role in the development of celiac disease, a team of researchers recently set out to investigate if plasma amino acid levels differed among children with celiac disease compared with a control group.
     
    The research team included Åsa Torinsson Naluai, Ladan Saadat Vafa, Audur H. Gudjonsdottir, Henrik Arnell, Lars Browaldh, and Daniel Agardh. They are variously affiliated with the Institute of Biomedicine, Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; the Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden; the Department of Clinical Science and Education, Karolinska Institute, Sodersjukhuset, Stockholm, Sweden; the Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; the Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; and with the Nathan S Kline Institute in the U.S.A.
    First, the team used liquid chromatography-tandem mass spectrometry (LC/MS) to analyze amino acid levels in fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls. They then crafted a general linear model using age and experimental effects as covariates to compare amino acid levels between children with celiac disease and non-celiac control subjects.
    Compared with the control group, seven out of twenty-three children with celiac disease showed elevated levels of the the following amino acids: tryptophan; taurine; glutamic acid; proline; ornithine; alanine; and methionine.
    The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects.
    This study shows that amino acids can influence inflammation and may play a role in the development of celiac disease.
    Source:
    PLoS One. 2018; 13(3): e0193764. doi: & 10.1371/journal.pone.0193764

    Jefferson Adams
    Celiac.com 04/18/2018 - To the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service animals.
    If you’ve flown anywhere lately, you may have seen them. People flying with their designated “emotional support” animals. We’re not talking genuine service animals, like seeing eye dogs, or hearing ear dogs, or even the Belgian Malinois that alerts its owner when there is gluten in food that may trigger her celiac disease.
    Now, to be honest, some of those animals in question do perform a genuine service for those who need emotional support dogs, like veterans with PTSD.
    However, many of these animals are not service animals at all. Many of these animals perform no actual service to their owners, and are nothing more than thinly disguised pets. Many lack proper training, and some have caused serious problems for the airlines and for other passengers.
    Now the major airlines are taking note and introducing stringent requirements for service animals.
    Delta was the first to strike. As reported by the New York Times on January 19: “Effective March 1, Delta, the second largest US airline by passenger traffic, said it will require passengers seeking to fly with pets to present additional documents outlining the passenger’s need for the animal and proof of its training and vaccinations, 48 hours prior to the flight.… This comes in response to what the carrier said was a 150 percent increase in service and support animals — pets, often dogs, that accompany people with disabilities — carried onboard since 2015.… Delta said that it flies some 700 service animals a day. Among them, customers have attempted to fly with comfort turkeys, gliding possums, snakes, spiders, and other unusual pets.”
    Fresh from an unsavory incident with an “emotional support” peacock incident, United Airlines has followed Delta’s lead and set stricter rules for emotional support animals. United’s rules also took effect March 1, 2018.
    So, to the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service and emotional support animals.
    Source:
    cnbc.com

    admin
    WHAT IS CELIAC DISEASE?
    Celiac disease is an autoimmune condition that affects around 1% of the population. People with celiac disease suffer an autoimmune reaction when they consume wheat, rye or barley. The immune reaction is triggered by certain proteins in the wheat, rye, or barley, and, left untreated, causes damage to the small, finger-like structures, called villi, that line the gut. The damage occurs as shortening and villous flattening in the lamina propria and crypt regions of the intestines. The damage to these villi then leads to numerous other issues that commonly plague people with untreated celiac disease, including poor nutritional uptake, fatigue, and myriad other problems.
    Celiac disease mostly affects people of Northern European descent, but recent studies show that it also affects large numbers of people in Italy, China, Iran, India, and numerous other places thought to have few or no cases.
    Celiac disease is most often uncovered because people experience symptoms that lead them to get tests for antibodies to gluten. If these tests are positive, then the people usually get biopsy confirmation of their celiac disease. Once they adopt a gluten-free diet, they usually see gut healing, and major improvements in their symptoms. 
    CLASSIC CELIAC DISEASE SYMPTOMS
    Symptoms of celiac disease can range from the classic features, such as diarrhea, upset stomach, bloating, gas, weight loss, and malnutrition, among others.
    LESS OBVIOUS SYMPTOMS
    Celiac disease can often less obvious symptoms, such fatigue, vitamin and nutrient deficiencies, anemia, to name a few. Often, these symptoms are regarded as less obvious because they are not gastrointestinal in nature. You got that right, it is not uncommon for people with celiac disease to have few or no gastrointestinal symptoms. That makes spotting and connecting these seemingly unrelated and unclear celiac symptoms so important.
    NO SYMPTOMS
    Currently, most people diagnosed with celiac disease do not show symptoms, but are diagnosed on the basis of referral for elevated risk factors. 

    CELIAC DISEASE VS. GLUTEN INTOLERANCE
    Gluten intolerance is a generic term for people who have some sort of sensitivity to gluten. These people may or may not have celiac disease. Researchers generally agree that there is a condition called non-celiac gluten sensitivity. That term has largely replaced the term gluten-intolerance. What’s the difference between celiac disease and non-celiac gluten-sensitivity? 
    CELIAC DISEASE VS. NON-CELIAC GLUTEN SENSITIVITY (NCGS)
    Gluten triggers symptoms and immune reactions in people with celiac disease. Gluten can also trigger symptoms in some people with NCGS, but the similarities largely end there.

    There are four main differences between celiac disease and non-celiac gluten sensitivity:
    No Hereditary Link in NCGS
    Researchers know for certain that genetic heredity plays a major role in celiac disease. If a first-degree relative has celiac disease, then you have a statistically higher risk of carrying genetic markers DQ2 and/or DQ8, and of developing celiac disease yourself. NCGS is not known to be hereditary. Some research has shown certain genetic associations, such as some NCGS patients, but there is no proof that NCGS is hereditary. No Connection with Celiac-related Disorders
    Unlike celiac disease, NCGS is so far not associated with malabsorption, nutritional deficiencies, or a higher risk of autoimmune disorders or intestinal malignancies. No Immunological or Serological Markers
    People with celiac disease nearly always test positive for antibodies to gluten proteins. Researchers have, as yet, identified no such antobodies or serologic markers for NCGS. That means that, unlike with celiac disease, there are no telltale screening tests that can point to NCGS. Absence of Celiac Disease or Wheat Allergy
    Doctors diagnose NCGS only by excluding both celiac disease, an IgE-mediated allergy to wheat, and by the noting ongoing adverse symptoms associated with gluten consumption. WHAT ABOUT IRRITABLE BOWEL SYNDROME (IBS) AND IRRITABLE BOWEL DISEASE (IBD)?
    IBS and IBD are usually diagnosed in part by ruling out celiac disease. Many patients with irritable bowel syndrome are sensitive to gluten. Many experience celiac disease-like symptoms in reaction to wheat. However, patients with IBS generally show no gut damage, and do not test positive for antibodies to gliadin and other proteins as do people with celiac disease. Some IBS patients also suffer from NCGS.

    To add more confusion, many cases of IBS are, in fact, celiac disease in disguise.

    That said, people with IBS generally react to more than just wheat. People with NCGS generally react to wheat and not to other things, but that’s not always the case. Doctors generally try to rule out celiac disease before making a diagnosis of IBS or NCGS. 
    Crohn’s Disease and celiac disease share many common symptoms, though causes are different.  In Crohn’s disease, the immune system can cause disruption anywhere along the gastrointestinal tract, and a diagnosis of Crohn’s disease typically requires more diagnostic testing than does a celiac diagnosis.  
    Crohn’s treatment consists of changes to diet and possible surgery.  Up to 10% of Crohn's patients can have both of conditions, which suggests a genetic connection, and researchers continue to examine that connection.
    Is There a Connection Between Celiac Disease, Non-Celiac Gluten Sensitivity and Irritable Bowel Syndrome? Large Number of Irritable Bowel Syndrome Patients Sensitive To Gluten Some IBD Patients also Suffer from Non-Celiac Gluten Sensitivity Many Cases of IBS and Fibromyalgia Actually Celiac Disease in Disguise CELIAC DISEASE DIAGNOSIS
    Diagnosis of celiac disease can be difficult. 

    Perhaps because celiac disease presents clinically in such a variety of ways, proper diagnosis often takes years. A positive serological test for antibodies against tissue transglutaminase is considered a very strong diagnostic indicator, and a duodenal biopsy revealing villous atrophy is still considered by many to be the diagnostic gold standard. 
    But this idea is being questioned; some think the biopsy is unnecessary in the face of clear serological tests and obvious symptoms. Also, researchers are developing accurate and reliable ways to test for celiac disease even when patients are already avoiding wheat. In the past, patients needed to be consuming wheat to get an accurate test result. 
    Celiac disease can have numerous vague, or confusing symptoms that can make diagnosis difficult.  Celiac disease is commonly misdiagnosed by doctors. Read a Personal Story About Celiac Disease Diagnosis from the Founder of Celiac.com Currently, testing and biopsy still form the cornerstone of celiac diagnosis.
    TESTING
    There are several serologic (blood) tests available that screen for celiac disease antibodies, but the most commonly used is called a tTG-IgA test. If blood test results suggest celiac disease, your physician will recommend a biopsy of your small intestine to confirm the diagnosis.
    Testing is fairly simple and involves screening the patients blood for antigliadin (AGA) and endomysium antibodies (EmA), and/or doing a biopsy on the areas of the intestines mentioned above, which is still the standard for a formal diagnosis. Also, it is now possible to test people for celiac disease without making them concume wheat products.

    BIOPSY
    Until recently, biopsy confirmation of a positive gluten antibody test was the gold standard for celiac diagnosis. It still is, but things are changing fairly quickly. Children can now be accurately diagnosed for celiac disease without biopsy. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide.

    WHY A GLUTEN-FREE DIET?
    Currently the only effective, medically approved treatment for celiac disease is a strict gluten-free diet. Following a gluten-free diet relieves symptoms, promotes gut healing, and prevents nearly all celiac-related complications. 
    A gluten-free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. This is a difficult task as there are many hidden sources of gluten found in the ingredients of many processed foods. Still, with effort, most people with celiac disease manage to make the transition. The vast majority of celiac disease patients who follow a gluten-free diet see symptom relief and experience gut healing within two years.
    For these reasons, a gluten-free diet remains the only effective, medically proven treatment for celiac disease.
    WHAT ABOUT ENZYMES, VACCINES, ETC.?
    There is currently no enzyme or vaccine that can replace a gluten-free diet for people with celiac disease.
    There are enzyme supplements currently available, such as AN-PEP, Latiglutetenase, GluteGuard, and KumaMax, which may help to mitigate accidental gluten ingestion by celiacs. KumaMax, has been shown to survive the stomach, and to break down gluten in the small intestine. Latiglutenase, formerly known as ALV003, is an enzyme therapy designed to be taken with meals. GluteGuard has been shown to significantly protect celiac patients from the serious symptoms they would normally experience after gluten ingestion. There are other enzymes, including those based on papaya enzymes.

    Additionally, there are many celiac disease drugs, enzymes, and therapies in various stages of development by pharmaceutical companies, including at least one vaccine that has received financial backing. At some point in the not too distant future there will likely be new treatments available for those who seek an alternative to a lifelong gluten-free diet. 

    For now though, there are no products on the market that can take the place of a gluten-free diet. Any enzyme or other treatment for celiac disease is intended to be used in conjunction with a gluten-free diet, not as a replacement.

    ASSOCIATED DISEASES
    The most common disorders associated with celiac disease are thyroid disease and Type 1 Diabetes, however, celiac disease is associated with many other conditions, including but not limited to the following autoimmune conditions:
    Type 1 Diabetes Mellitus: 2.4-16.4% Multiple Sclerosis (MS): 11% Hashimoto’s thyroiditis: 4-6% Autoimmune hepatitis: 6-15% Addison disease: 6% Arthritis: 1.5-7.5% Sjögren’s syndrome: 2-15% Idiopathic dilated cardiomyopathy: 5.7% IgA Nephropathy (Berger’s Disease): 3.6% Other celiac co-morditities include:
    Crohn’s Disease; Inflammatory Bowel Disease Chronic Pancreatitis Down Syndrome Irritable Bowel Syndrome (IBS) Lupus Multiple Sclerosis Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Psoriasis Rheumatoid Arthritis Scleroderma Turner Syndrome Ulcerative Colitis; Inflammatory Bowel Disease Williams Syndrome Cancers:
    Non-Hodgkin lymphoma (intestinal and extra-intestinal, T- and B-cell types) Small intestinal adenocarcinoma Esophageal carcinoma Papillary thyroid cancer Melanoma CELIAC DISEASE REFERENCES:
    Celiac Disease Center, Columbia University
    Gluten Intolerance Group
    National Institutes of Health
    U.S. National Library of Medicine
    Mayo Clinic
    University of Chicago Celiac Disease Center