• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,335
    Total Members
    3,093
    Most Online
    linda1313
    Newest Member
    linda1313
    Joined
  • 0

    Can Antibodies Predict Mucosal Healing in Kids with Celiac Disease?


    Jefferson Adams
    Image Caption: Photo: Wikimedia Commons--Eva K.

    Celiac.com 04/22/2014 - Blood tests are highly valuable for diagnosing celiac disease. However, their role in gauging mucosal healing in celiac children who have adopted gluten-free diets is unclear.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    A team of researchers recently set out to compare the performance of antibody tests in predicting small-intestinal mucosal status in diagnosis and follow-up of pediatric celiac disease.

    Photo: Wikimedia Commons--Eva K.The research team included Edith Vécsei, Stephanie Steinwendner, Hubert Kogler, Albina Innerhofer, Karin Hammer, Oskar A Haas, Gabriele Amann, Andreas Chott, Harald Vogelsang, Regine Schoenlechner, Wolfgang Huf, and Andreas Vécsei.

    They are variously affiliated with the Clinical Department of Pathology and the Department of Internal Medicine III of the Division for Gastroenterology and Hepatology, the Center for Medical Physics and Biomedical Engineering, the Department of Pediatrics and Pediatric Gastroenterology of St. Anna Children's Hospital, all at Medical University Vienna, and with the Institute of Pathology and Microbiology, Wilhelminenspital in Vienna, and with the Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences in Vienna, Austria.

    The team conducted a prospective cohort study at a tertiary-care center, where 148 children received biopsies either for symptoms ± positive celiac disease antibodies (group A; n = 95) or following up celiac disease diagnosed ≥ 1 year before study enrollment (group B; n = 53).

    Using biopsy (Marsh ≥ 2) as the criterion standard, they calculated areas under ROC curves (AUCs) and likelihood-ratios to gauge the performance of antibody tests against tissue transglutaminase (TG2), deamidated gliadin peptide (DGP) and endomysium (EMA).

    They found that AUC values were higher when tests were used for celiac disease diagnosis compared with follow-up: 1 vs. 0.86 (P = 0.100) for TG2-IgA, 0.85 vs. 0.74 (P = 0.421) for TG2-IgG, 0.97 vs. 0.61 (P = 0.004) for DPG-IgA, and 0.99 vs. 0.88 (P = 0.053) for DPG-IgG, respectively.

    Empirical power was 85% for the DPG-IgA comparison, and on average 33% (range 13–43) for the non-significant comparisons. A total of 88.7% of group B children showed mucosal healing, at an average of 2.2 years after primary diagnosis.

    Only the negative likelihood-ratio of EMA was low enough (0.097) to effectively rule out persistent mucosal injury. However, out of 12 EMA-positive children with mucosal healing, 9 subsequently tested EMA-negative.

    Among the celiac disease antibodies examined, negative EMA most reliably predict mucosal healing. In general, however, antibody tests, especially DPG-IgA, are of limited value in predicting the mucosal status in the early years after celiac diagnosis, though they may do better over a longer time.

    Source:

    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   16 Members, 1 Anonymous, 1,072 Guests (See full list)

  • Related Articles

    Jefferson Adams
    Celiac.com 03/15/2010 - A team of researchers recently set out to investigate mucosal expression of claudins 2, 3 and 4 in the proximal and distal parts of duodenum in children with celiac disease. The team included Dorottya Nagy Szakál, Hajnalka GyÅ‘rffy, András Arató, Áron Cseh, Kriszta Molnár, Mária Papp, Antal DezsÅ‘fi, and Gábor Veres. They are variously associated with the Department of Pediatrics, and the Department of Pathology at Semmelweis University in Budapest, Hungary, and the Department of Medicine at the University of Debrecen in Debrecen, Hungary.
    Duodenal biopsy is an important tool for properly diagnosing celiac disease. However, the issue of finding the best site for taking biopsy samples that will give the best results for diagnosing celiac disease is still not fully resolved.
    Claudins (CLDNs), belong to a large group of related adherent junction proteins, which are known to express characteristic patterns in inflammatory disorders. However, doctors presently know nothing about CLDN expression in people with celiac disease. To address the situation, the team performed a comparative study to examine the CLDN 2, 3 and 4 expressions in both the proximal and distal parts of duodenum in children with celiac disease and in control subjects.
    For the study, they enrolled a total of forty-seven children. Thirty-three had newly diagnosed celiac disease, while fourteen healthy children served as control subjects. The team took biopsies from proximal and distal part of duodenum, and used immunohistochemistry to detect CD3+ intraepithelial lymphocytes and CLDN 2, 3 and 4 protein expressions.
    Whether taken from proximal or distal part of duodenum, biopsies revealed no differences under macroscopic imaging, routine histology and Marsh grading.
    However, in comparison to controls, patients with severe celiac disease showed significantly higher CLDN 2 expression in bulb and in distal duodenum, while non-severe celiac patients showed higher distal CLDN 2 expression. The data showed similar associations regarding CLDN 3 expression. All groups showed similar expression of CLDN 4.
    The data showed that both proximal and distal mucosal duodenal biopsies are suitable for diagnosing villous atrophy in patients with celiac disease.
    Finally, the team noted that increased expressions of CLDN 2 and 3 imply structural changes of tight junction in celiac disease, which may play a role in increased permeability and proliferation observed in celiac disease.
    Source:

    Virchows Archive, Volume 456, Number 3 / March, 2010

    Jefferson Adams
    Celiac.com 06/17/2010 - In a recent letter to the editors of Clinical Chemistry, Carolina Arguelles-Grande, Gary L. Norman, Govind Bhagat, and Peter H. R. Green describe how hemolysis interferes with the detection of anti–tissue transglutaminase antibodies in celiac disease.
    They are variously affiliated with the Departments of Medicine and Pathology at Columbia University's College of Physicians and Surgeons in New York, and with INOVA Diagnostics, Inc., in San Diego, CA.
    Using human recombinant or erythrocyte tTG-IgA–based ELISA assays to measure anti–tissue transglutaminase (tTG) antibodies is one of the favored methods for diagnosing celiac disease.
    However, assessments of various tTG kits have shown variations in sensitivity, which has raised some alarms among clinicians. Many clinicians suspect that hemolysis plays a role in these variations.
    To assess the effect of hemolysis on tTG-IgA titers, the team looked at blood samples from 9 patients with biopsy-confirmed, active celiac disease who chose to participate in the study.
    They split the samples into 3 groups, with three samples in each group. They divided the samples according to tTG-IgA concentration after thawing. They categorized the samples as high titer (>185 U), intermediate titer (100–140 U), and borderline titer (20–50 U).
    The team hemolyzed a whole-blood sample taken from 1 tTG/DGP-seronegative patient. They measured hemoglobin in the sample at 149 g/L of hemoglobin. They repeatedly froze and thawed the sample until 90% of cells hemolyzed. They then serially diluted in ratios of 1:2, 1:5, 1:10, 1:50, 1:100, 1:500 in PBS to obtain hemoglobin concentrations of 67.1, 26.8, 13.4, 2.7, 1.3, and 0.27 g/L, respectively. They then added to each sample at a 1:1 ratio.
    For the tTG sequestration assessment, the team added human recombinant tTG from Diarect AG for final concentrations of 0.04, 0.02, 0.01, and 0.002 g/L. The team used undiluted serum as the baseline titer reference, and serum diluted 1:2 in PBS as a control.
    To measure antibody titers, they used 2 ELISA test kits: QUANTA LiteTM h-tTG IgA (human erythrocyte tTG-IgA based) and Gliadin II (DGP-IgA based) from INOVA Diagnostics, Inc.  The team conducted blinded screens per manufacturer instructions, and compared the results for each group using the Mann–Whitney U-test, with P values <0.05 considered significant.
    They discovered that adding hemolyzed blood (HB) to sera of patients with active celiac disease lowered levels of anti-tTG, with intermediate- and borderline-titer groups seeing the largest reduction. Anti-DGP antibodies remained unchanged.
    Total average titer loss of anti-tTG vs anti-DGP antibodies was 36% vs 13% in the high-titer groups (P 0.026), 45% vs 3% (P = 0.026) in the intermediate titer groups, and 51% vs 2% in the borderline-titer groups (P = 0.0022)
    The team also found that adding ever higher concentrations of hemoglobin lowered the titers of anti-tTG, but not of anti-DGP, causing negative anti-tTG results in samples with low tTG antibody concentrations.
    The anti-tTG titer decreased 2%–65% in the high-titer groups, 1%–81% in the intermediate-titer groups, and 16%–74% in the borderline-titer group at hemoglobin concentrations of 0.3– 67.1 g/L.
    This compares with a decrease in anti-DGP titers of 10%–16% for high-titer groups, 4%–8% for intermediate-titer groups, and 7%–3% for the borderline-titer groups at hemoglobin concentrations of 0.3– 67.1 g/L.
    In all groups, tTG titer reduction was greater at higher concentrations of HB/HGB and gradually recovered as the red tint started to vanish at about 13 g/L of HGB, until complete visual disappearance at about 0.3g/L HGB).
    In the intermediate- and borderline-titer groups, titer reduction induced false-negative results at 20 U, with the anti-tTG, but not anti-DGP assays for HGB concentrations  ≥13 or ≥0.3 g/L, respectively.
    They also found that raising concentrations of exogenous tTG (recombinant human tTG) to intermediate-titer blood samples triggered a significant reduction in anti-tTG assay titers similar to that seen with hemoglobin (range, 32%–82%; mean, 69%), as compared with that of anti-DGP titers (mean, 18%; range, 1%–38%; P = 0.0159).
    Hemolysis is clearly indicated by a red tint in serum plasma, and is one of the most common reasons for labs to reject specimens. Visible hemolysis starts at about 0.5 g/L of hemoglobin and is obvious above 1.3 g/L of hemoglobin.
    The results show that that hemolysis does interfere with the detection of anti-tTG antibodies, and that visibly hemolyzed blood samples generate false-negative anti–tTG-IgA results.
    These findings may explain false-negative tests for celiac disease that arise when clinicians use tTG-IgA assays. They encourage clinicians and laboratories to take measures to avoid hemolysis. If they notice hemolyzed blood samples, they should alert physicians so new blood samples can be taken. If redrawing samples is not possible, hemolyzed samples should be measured for anti-DGP antibodies.
    Clinicians who suspect hemolysis should consider using anti-DGP serological tests, which are not influenced by hemolysis.
    Source:

     Clinical Chemistry. 2010;56:1034-1036. DOI: 10.1373/clinchem.2010.143263

    Jefferson Adams
    Celiac.com 02/23/2011 - In most adults with celiac disease, clinical symptoms disappear with a gluten-free diet. However, the exact effects of a gluten-free diet on rates of mucosal recovery in adults with celiac disease is less certain.
    A group of clinicians recently set out to assess rates of mucosal recovery under a gluten-free diet in adults with celiac disease, and to gauge the clinical prospects of ongoing mucosal damage in celiac patients who follow a gluten-free diet.
    The study group included Alberto Rubio-Tapia, MD; Mussarat W. Rahim, MBBS; Jacalyn A. See, MS, RD, LD; Brian D. Lahr, MS; Tsung-Teh Wu, MD; and Joseph A. Murray, MD.
    Each patient in the study had biopsy-proven celiac disease, and was assessed at the Mayo Clinic. Also, each patient received duodenal biopsies at diagnosis. After beginning a gluten-free diet, each patient had at least one follow-up intestinal biopsy to assess mucosal recovery.
    The study team focused on mucosal recovery and overall mortality. Of 381 adult patients with biopsy-proven celiac disease, a total of 241 (175 women - 73%) had both a diagnostic and follow-up biopsy available for re-review.
    Using the Kaplan–Meier rate of confirmed mucosal recovery to assess these 241 patients, the study group found that 34% of the patients enjoyed mucosal recovery at 2 years after diagnosis (95% with a confidence interval (CI): 27–40 % ), and 66% of patients enjoyed mucosal recovery at 5 years (95% CI: 58–74 % ).
    More than 80% of patients showed some clinical response to the gluten-free diet, but clinical response was not a reliable marker of mucosal recovery ( P = 0.7). Serological response was, by far, the best marker for confirmed mucosal recovery ( P = 0.01).
    Patients who complied poorly with a gluten-free diet ( P < 0.01), those with severe celiac disease defined by diarrhea and weight loss ( P < 0.001), and those with total villous atrophy at diagnosis ( P < 0.001) had high rates of persistent mucosal damage.
    With adjustments for gender and age, patients who experienced confirmed mucosal recovery had lower mortality rates overall (hazard ratio = 0.13, 95 % CI: 0.02 – 1.06, P = 0.06).
    One of the most important findings from this study was that a large number of adults with celiac disease have no mucosal recovery, even after treatment with a gluten free diet.
    Compared to those patients who suffered persistent damage, patients who experienced confirmed mucosal recovery had lower rates of mortality independent of age and gender.
    The group notes that systematic follow-up via intestinal biopsy may be advisable for adults with celiac disease.
    Source:

     Am J Gastroenterol. 9 February 2010; doi: 10.1038/ajg.2010.10

    Jefferson Adams
    Celiac.com 09/03/2014 - What’s potential celiac disease, and what happens to kids who have it and continue to eat a gluten-containing diet?
    Researchers define potential celiac disease as the presence of serum anti-tissue-transglutaminase (anti-TG2) antibodies with normal duodenal mucosa. That is, a positive blood screen, but no intestinal damage. However, not much is known about potential celiac disease because people who have it often show no obvious symptoms. Patients with potential celiac disease present some challenges for doctors trying to determine how likely it is that these patients will develop villous atrophy, the gut damage common in celiac disease patients exposed to gluten.
    A research team conducted a prospective longitudinal cohort study to follow patients with potential celiac disease up to 9 years, and explore the risk factors tied to mucosal damage. The research team included Renata Auricchio MD, PhD, Antonella Tosco MD, Emanuela Piccolo MD, Martina Galatola PhD, Valentina Izzo PhD, Mariantonia Maglio PhD, Francesco Paparo PhD, Riccardo Troncone MD, PhD, and Luigi Greco MD, PhD. They are affiliated with the Department of Medical Translational Science, European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Naples, Italy.
    For their study, the team found two hundred and ten asymptomatic children with potential celiac disease. They kept 175 of them on a gluten-containing diet. To evaluate histological, immuno-histochemical, and anti-TG2 status, they checked blood antibody levels and clinical symptoms every 6 months, and took a small bowel biopsy every two years. They also genotyped all patients for HLA and non-HLA celiac-associated genes.
    Forty-three percent of patients showed persistently elevated anti-TG2 levels, 20% became negative during follow-up, and 37% showed variations in anti-TG2 course, with many patients testing at zero anti-TG2.
    After three years of follow-up, 86% of study patients continued to have potential celiac disease. After 6 and 9 years, respectively, 73% and 67% of study patients still had normal duodenal structure.
    Individuals prone to develop mucosal damage during the test period were predominantly male, had slight mucosal inflammation at study’s start, and fit a peculiar genetic profile.
    Nine years after follow-up, a large number of patients with asymptomatic potential celiac disease showed reduced antibody production, many even showing zero production, and many of these, with persistently positive anti-TG2, showed no mucosal damage.
    Given the results of this study, and noting that the celiac population is in fact made up of numerous individuals with diverse genetic and phenotypic makeup, the researchers are advising doctors to be cautious in prescribing a strict lifelong gluten-free diet for asymptomatic individuals with potential celiac disease.
    Source:
     The American Journal of Gastroenterology

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023

    Jefferson Adams
    Celiac.com 06/13/2018 - There have been numerous reports that olmesartan, aka Benicar, seems to trigger sprue‐like enteropathy in many patients, but so far, studies have produced mixed results, and there really hasn’t been a rigorous study of the issue. A team of researchers recently set out to assess whether olmesartan is associated with a higher rate of enteropathy compared with other angiotensin II receptor blockers (ARBs).
    The research team included Y.‐H. Dong; Y. Jin; TN Tsacogianis; M He; PH Hsieh; and JJ Gagne. They are variously affiliated with the Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School in Boston, MA, USA; the Faculty of Pharmacy, School of Pharmaceutical Science at National Yang‐Ming University in Taipei, Taiwan; and the Department of Hepato‐Gastroenterology, Chi Mei Medical Center in Tainan, Taiwan.
    To get solid data on the issue, the team conducted a cohort study among ARB initiators in 5 US claims databases covering numerous health insurers. They used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for enteropathy‐related outcomes, including celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy. In all, they found nearly two million eligible patients. 
    They then assessed those patients and compared the results for olmesartan initiators to initiators of other ARBs after propensity score (PS) matching. They found unadjusted incidence rates of 0.82, 1.41, 1.66 and 29.20 per 1,000 person‐years for celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy respectively. 
    After PS matching comparing olmesartan to other ARBs, hazard ratios were 1.21 (95% CI, 1.05‐1.40), 1.00 (95% CI, 0.88‐1.13), 1.22 (95% CI, 1.10‐1.36) and 1.04 (95% CI, 1.01‐1.07) for each outcome. Patients aged 65 years and older showed greater hazard ratios for celiac disease, as did patients receiving treatment for more than 1 year, and patients receiving higher cumulative olmesartan doses.
    This is the first comprehensive multi‐database study to document a higher rate of enteropathy in olmesartan initiators as compared to initiators of other ARBs, though absolute rates were low for both groups.
    Source:
    Alimentary Pharmacology & Therapeutics