• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,650
    Total Members
    3,093
    Most Online
    Drmanon
    Newest Member
    Drmanon
    Joined
  • 0

    Designing new High Affinity Peptide Ligands for HLA-DQ2 Using a Positional Scanning Peptide Library


    Jefferson Adams

    A team of researchers recently to examine the design of new high affinity peptide ligands for HLA-DQ2 using a positional scanning peptide library.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    The research team included U. Jüse, Y. van de Wal, F. Koning, L. M. Sollid, B. Fleckenstein with the Centre for Immune Regulation, Institute of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.

    HLA-DQ2 (DQA1*0501/DQB1*0201) is associated with several immune disorders including celiac disease, which results from an inappropriate T-cell response to gluten.

    Researchers hope that interference with peptide presentation by HLA-DQ2, perhaps through the use of of peptide blockers, might lead to new treatment strategy for such HLA associated disorders. For such strategies to work, it will be necessary to identify ligands that bind much better to HLA-DQ2 than the disease related epitopes.

    The team used a positional scanning nonapeptide library to determine the optimal amino acids for each position of the HLA-DQ2 binding frame. By combining the optimal residues in each position, the team was able to design high affinity binders to HLA-DQ2.

    Interestingly, the decapeptide with highest affinity was composed of the most favorable residues in each position. This sequence bound 50-fold better than the immunodominant gluten epitope DQ2-alpha-I-gliadin what makes it an interesting lead compound for the development of blockers.

    The correlation between measured and predicted affinities was poorer for some natural HLA-DQ2 ligands, but notably these peptides did not have optimal amino acids at all positions.

    The team's method offers a straightforward approach for developing high affinity binders to HLA class II molecules.

    Source: Hum Immunol. 2010 Jan 24.


    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Ads by Google:

  • About Me

    Jefferson Adams is a freelance writer living in San Francisco. He has covered Health News for Examiner.com, and provided health and medical content for Sharecare.com. His work has appeared in Antioch Review, Blue Mesa Review, CALIBAN, Hayden's Ferry Review, Huffington Post, the Mississippi Review, and Slate, among others.

  • Popular Contributors

  • Ads by Google:

  • Who's Online   12 Members, 0 Anonymous, 693 Guests (See full list)

  • Related Articles

    Jefferson Adams
    Celiac.com 04/24/2009 - Currently, one of the more promising areas of celiac disease research looks to be in peptide-based therapies. One of the keys to creating an effective peptide-based therapy for celiac disease lies in identifying the gluten peptides that trigger intestinal T cell responses when people with celiac disease consume wheat, rye, or barley.
    A team of Italian researchers recently set out to do just that. The team was made up of A. Camarca, R.P. Anderson, G. Mamone, O. Fierro , A. Facchiano, S. Costantini, D. Zanzi, J. Sidney, S. Auricchio, A. Sette, R. Troncone, and C. Gianfrani. Their efforts were supported by the Institute of Food Sciences-National Research Council, Avellino, Italy. Their research carries strong implications for a peptide-based therapy in celiac disease.
    Presently, several gluten peptides are known to be active in celiac disease. The identification of additional gluten peptides eliciting intestinal T cell responses is critical for designing a successful peptide-based immunotherapy for celiac disease.
    In their study, the research team assessed the recognition profile of gluten immunogenic peptides in adult HLA-DQ2(+) celiac patients. They did so by creating several lines of polyclonal, gliadin-reactive T cells from jejunal mucosa. They then tested for both proliferation and IFN-gamma production in reaction to 21 peptides from wheat glutenins and alpha-, gamma-, and omega-gliadins.  They then conducted a magnitude analysis of the IFN-gamma responses to determine the spectrum of individual peptide activity, and to rank them accordingly.
    Notably, 12 of the 14 patients responded to a different array of peptides. All alpha-gliadin stimulatory peptides mapped the 57-89 N-terminal region, thus affirming the importance of the known polyepitope 33-mer, although  only 50% of subjects recognized 33-mer.
    By contrast, 11 of 14 celiac subjects, nearly 80%, responded to gamma-gliadin peptides. A 17-mer variant of 33-mer, QLQPFPQPQLPYPQPQP, posessing only a single copy of DQ2-alpha-I and DQ2-alpha-II epitopes, displayed the same potency as 33-mer in triggering intestinal T cell responses.
    One particular peptide from omega-gliadin, QPQQPFPQPQQPFPWQP, though structurally related to the alpha-gliadin 17-mer, is a separate epitope and activated in 5 out of 14 subjects.
    The team's data reveal that intestinal T cells respond to a wide array of peptides, and that this heterogeneity  emphasizes the relevance of gamma- and omega-gliadin peptides in celiac disease pathogenesis. Their findings indicate that, in DQ2(+) celiac patients, the most active gluten peptides are alpha-gliadin (57-73), gamma-gliadin (139-153), and omega-gliadin (102-118).

    J Immunol. 2009 Apr 1;182(7):4158-66.


    Jefferson Adams
    Celiac.com 08/06/2009 - A study by a team of Spanish researchers puts the world on notice that gluten may trigger adverse reactions in both celiacs and non-celiacs alike. The research team was made up of E. Arranz, D. Bernardo, L. Fernandez-Salazar, J. A. Garrote and their colleague S. Riestra, all doctors based in Spain.
    According to the current medical wisdom, innate immunity to gluten plays a critical role in the development of celiac disease (celiac disease).
    This innate immune response is caused by a reaction to the ‘toxic’ gluten peptides that is mediated by interleukin (IL) 15, like the 19-mer through a DQ2-independent mechanism, and which causes epithelial stress and triggers the intraepithelial lymphocytes to turn into natural killer (NK)-like cells, which then causes enterocyte apoptosis and a compromised permeability of the cells lining of the gut…and, violà, celiac disease!
    It is by breaching this lining that immuno-dominant peptides, such as the 33-mer peptide, come into contact with the lamina propria, which triggers adaptive immunity.
    The innate specific response in celiac disease has been pretty well documented, but until recently, no one had described any differential factors between people with celiac disease and those without.
    Since the toxic 19-mer triggers its damaging effects through a DQ2-independent mechanism, doctors wondered whether the innate immune response was common in both people with and without celiac disease, and whether the adaptive response is emblematic only of susceptible people with celiac disease.
    A team of researchers recently set out to determine just that, beginning with biopsies from at least three patients with celiac disease who were observing a gluten-free diet and three patients who are free of celiac disease. The research team consisted of D. Bernardo, L. Fernandez-Salazar, J. A. Garrote and their colleague S. Riestra, all based in Spain.
    The team applied crude gliadin, the gliadin synthetic 19-mer and deaminated 33-mer peptides to the biopsy tissue after discarding the presence of lipopolysaccharide.
    They did this at concentrations of 100 mg/ml for 3 hours to mimic what are considered the standard timing and concentration in the digestive tract after a routine meal.
    The research team then washed the specimens and cultured them for 21 hours in new clean culture medium to assess whether an innate stimulus is reflected by an adaptive response.
    Here’s some technical jargon:
    Each sample cultured in basal medium served as an internal control. Innate immune mediators IL15 and nitrites were measured by western blot in the biopsy protein extract along with a Griess reagent system in the 3 h supernatants respectively. mRNA levels of adaptive immunity mediators like signal transducers and activators of transcription (STAT) 1, STAT3, tumour necrosis factor a, interferon (IFN) c, IL23 (p19), IL27 (p28) and IL12 (p35) were determined by real-time polymerase chain reaction using b actine levels as house-keeping.
    Compared with the basal culture, all of the patients were challenged with the gliadin solution, and all of the patients, both those with and those without celiac disease on a gluten free diet, showed IL15 production, which indicates an immune reaction is taking place.
    More importantly, the IL15-mediated response in patients without celiac disease was triggered, in three of six cases, by the same toxic 19-mer gliadin peptide and, in five of six cases, by the 33-mer gliadin peptide as in those with celiac disease.
    Significantly, none of the basal cultures showed this result, though the ‘‘non-toxic’’ immuno-dominant 33-mer did induce an innate response that was un-foreseen.
    Interestingly, one patient with celiac disease and on a gluten-free diet, and three patients without celiac disease, who were also on gluten-free diets, all showed the IL15 response, which was confirmed by western blot analysis. This discounts an intracellular and non-biologically active IL15 response in patients without celiac disease.
    The gliadin-challenged patients with celiac disease who were on a GFD, showed increased nitrite levels, which those without celiac disease did not show. Following the biopsy mRNA isolation, only patients with celiac disease showed modifications to what are called adaptive mediators (STAT1, STAT3, IFNc).
    The basal samples of those celiac patients on a gluten-free diet showed
    IFNc mRNA levels that were 80 times higher than basal samples of those without celiac disease (p value 0.002), along with a slightly higher production of nitrites (p value 0.052).
    This appears to be the first time that researchers have described an IL15-mediated innate response to gliadin and gliadin peptides in people without celiac disease, as well as the first time they have described an IL15-mediated innate response to the ‘non-toxic’ deaminated immuno-dominant 33-mer peptide.
    What this all means is that, for the first time, scientists have documented harmful effects of gluten on people without celiac disease. This hypothesis seems to be born out by the fact that all individuals who took place in the study, both those with and those without celiac disease, showed an innate immune response to gluten, though only those with celiac disease showed an adaptive immune response to gluten.
    Clearly, before doctors can draw any hard and fast conclusions, they will need to do more studies on larger groups.
    The research team also suggests that people with celiac disease have a lower threshold for triggering an adaptive TH1 response than do non-celiacs, and that people with celiac disease need to be DQ2 positive.
    The reason for the differences in threshold levels between celiacs and non-celiacs might be tied to the fact that celiac patients show higher basal levels of immune mediators, such as IFNc mRNA, compared to those without celiac disease. That’s one possibility.
    The difference in threshold levels might also have to do with some kind of defect in permeability of the gut membrane in those with celiac disease, or even a greater IL15-sensitivity response under equal stimulus, which might be mediated by a higher density of IL15 receptor in patients with celiac disease.
    Gut 2007;56:889–890


    Jefferson Adams
    Celiac.com 12/26/2010 - Should everyone with symptoms of celiac disease go on a gluten-free diet? Current practice allows many patients with symptoms of celiac disease, but no gut damage, and thus no official diagnosis, to forgo a gluten-free diet.
    In a new study, researchers found that people with celiac disease symptoms have the same distinctive metabolic fingerprint as patients with full-blown disease, and who must follow a gluten-free diet to avoid permanent damage to the gut.
    The new study, by Ivano Bertini and colleagues, is stirring up the discussion about just which patients with symptoms of celiac disease should follow a gluten-free diet.
    Their research shows that people currently diagnosed as "potential" celiac disease patients and not advised to follow a gluten-free diet may not be "potential" patients at all.
    Celiac disease is widely regarded as undiagnosed or misdiagnosed. For their study, the researchers used magnetic resonance metabolic profiling to analyze the biochemical markers in the blood and urine of 61 patients with celiac disease, 29 with potential celiac disease, and 51 healthy people.
    The researchers found that people with unproven celiac disease largely shared the same profile as those with confirmed celiac disease and that the biochemical markers in both groups differed sharply from those of healthy individuals.
    The researchers conclude that their findings "demonstrate that metabolic alterations may precede the development of small intestinal villous atrophy and provide a further rationale for early institution of gluten-free diet in patients with potential celiac disease, as recently suggested by prospective clinical studies."
    The authors do note receiving funding from Boehringer Ingelheim Italy.
    Source:

    American Chemical Society Journal of Proteome Research

    Jefferson Adams
    Celiac.com 04/24/2015 - Dr. Falk Pharma and Zedira recently announced the start of phase I clinical trials for the drug candidate ZED1227, a direct acting inhibitor of tissue transglutaminase.
    The small molecule targets the dysregulated transglutaminase within the small intestine in order to dampen the immune response to gluten which drives the disease process. This approach will offer patients additional safety when applied in support of a ‘mostly’ gluten-free diet thereby improving the quality-of-life of millions of people.
    In 2011, Dr. Falk Pharma licensed the rights for ZED1227 in Europe and took charge of pre-clinical and clinical development of the new drug. The license agreement secured Zedira an upfront payment and further milestone payments as well as royalties. The rights outside Europe are jointly owned by the partners.
    The project receives additional support through a grant from the German Ministry for Education and Research within the Cluster of Excellence program “Ci3-Cluster for Individualized Immune Intervention."

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/21/2018 - Would you buy a house advertised as ‘gluten-free’? Yes, there really is such a house for sale. 
    It seems a Phoenix realtor Mike D’Elena is hoping that his trendy claim will catch the eye of a buyer hungry to avoid gluten, or, at least one with a sense of humor. D’Elena said he crafted the ads as a way to “be funny and to draw attention.” The idea, D’Elena said, is to “make it memorable.” 
    Though D’Elena’s marketing seeks to capitalizes on the gluten-free trend, he knows Celiac disease is a serious health issue for some people. “[W]e’re not here to offend anybody….this is just something we're just trying to do to draw attention and do what's best for our clients," he said. 
    Still, the signs seem to be working. D'elena had fielded six offers within a few days of listing the west Phoenix home.
    "Buying can sometimes be the most stressful thing you do in your entire life so why not have some fun with it," he said. 
    What do you think? Clever? Funny?
    Read more at Arizonafamily.com.

    Advertising Banner-Ads
    Bakery On Main started in the small bakery of a natural foods market on Main Street in Glastonbury, Connecticut. Founder Michael Smulders listened when his customers with Celiac Disease would mention the lack of good tasting, gluten-free options available to them. Upon learning this, he believed that nobody should have to suffer due to any kind of food allergy or dietary need. From then on, his mission became creating delicious and fearlessly unique gluten-free products that were clean and great tasting, while still being safe for his Celiac customers!
    Premium ingredients, bakeshop delicious recipes, and happy customers were our inspiration from the beginning— and are still the cornerstones of Bakery On Main today. We are a fiercely ethical company that believes in integrity and feels that happiness and wholesome, great tasting food should be harmonious. We strive for that in everything we bake in our dedicated gluten-free facility that is GFCO Certified and SQF Level 3 Certified. We use only natural, NON-GMO Project Verified ingredients and all of our products are certified Kosher Parve, dairy and casein free, and we have recently introduced certified Organic items as well! 
    Our passion is to bake the very best products while bringing happiness to our customers, each other, and all those we meet!
    We are available during normal business hours at: 1-888-533-8118 EST.
    To learn more about us at: visit our site.

    Jefferson Adams
    Celiac.com 06/20/2018 - Currently, the only way to manage celiac disease is to eliminate gluten from the diet. That could be set to change as clinical trials begin in Australia for a new vaccine that aims to switch off the immune response to gluten. 
    The trials are set to begin at Australia’s University of the Sunshine Coast Clinical Trials Centre. The vaccine is designed to allow people with celiac disease to consume gluten with no adverse effects. A successful vaccine could be the beginning of the end for the gluten-free diet as the only currently viable treatment for celiac disease. That could be a massive breakthrough for people with celiac disease.
    USC’s Clinical Trials Centre Director Lucas Litewka said trial participants would receive an injection of the vaccine twice a week for seven weeks. The trials will be conducted alongside gastroenterologist Dr. James Daveson, who called the vaccine “a very exciting potential new therapy that has been undergoing clinical trials for several years now.”
    Dr. Daveson said the investigational vaccine might potentially restore gluten tolerance to people with celiac disease.The trial is open to adults between the ages of 18 and 70 who have clinically diagnosed celiac disease, and have followed a strict gluten-free diet for at least 12 months. Anyone interested in participating can go to www.joinourtrials.com.
    Read more at the website for Australia’s University of the Sunshine Coast Clinical Trials Centre.

    Source:
    FoodProcessing.com.au

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.