• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    71,926
    Total Members
    3,093
    Most Online
    Johnna Johnson
    Newest Member
    Johnna Johnson
    Joined
  • Announcements

    • admin

      Frequently Asked Questions About Celiac Disease   04/07/2018

      This Celiac.com FAQ on celiac disease will guide you to all of the basic information you will need to know about the disease, its diagnosis, testing methods, a gluten-free diet, etc.   Subscribe to Celiac.com's FREE weekly eNewsletter   What are the major symptoms of celiac disease? Celiac Disease Symptoms What testing is available for celiac disease?  Celiac Disease Screening Interpretation of Celiac Disease Blood Test Results Can I be tested even though I am eating gluten free? How long must gluten be taken for the serological tests to be meaningful? The Gluten-Free Diet 101 - A Beginner's Guide to Going Gluten-Free Is celiac inherited? Should my children be tested? Ten Facts About Celiac Disease Genetic Testing Is there a link between celiac and other autoimmune diseases? Celiac Disease Research: Associated Diseases and Disorders Is there a list of gluten foods to avoid? Unsafe Gluten-Free Food List (Unsafe Ingredients) Is there a list of gluten free foods? Safe Gluten-Free Food List (Safe Ingredients) Gluten-Free Alcoholic Beverages Distilled Spirits (Grain Alcohols) and Vinegar: Are they Gluten-Free? Where does gluten hide? Additional Things to Beware of to Maintain a 100% Gluten-Free Diet What if my doctor won't listen to me? An Open Letter to Skeptical Health Care Practitioners Gluten-Free recipes: Gluten-Free Recipes
  • 0

    EFFECTOR AND SUPPRESSOR T CELLS IN CELIAC DISEASE


    Jefferson Adams

    Celiac.com 08/17/2015 - In an interesting update, researcher Giuseppe Mazzarella, of the Immuno-Morphology Lab at the Institute of Food Sciences of the National Council Research in Avellino, Italy recently set out to examine the role of effector and suppressor T cells in celiac.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Image: Wikimedia Commons: NIAID/NIHCeliac disease is a T-cell-mediated immune disorder in which gliadin-derived peptides activate lamina propria effector CD4+ T cells.

    This activation triggers the release of cytokines, compatible with a Th1-like pattern, which play a crucial role in the development of celiac disease, and which control many aspects of the inflammatory immune response.

    Previous studies revealed that a novel subset of effector T cells, marked by expression of high levels of IL-17A, termed Th17 cells, plays a key role in celiac disease.

    Although these effector T cell subsets produce pro-inflammatory cytokines, which cause significant tissue damage in celiac sufferers, recent studies have suggested the existence of additional CD4(+) T cell subsets with suppressor functions.

    These subsets include type 1 regulatory T cells and CD25(+)CD4(+) regulatory T cells, expressing the master transcription factor Foxp3, which have important implications for the development and progression of celiac disease.

    Source:


    Image Caption: Electron microscope image of a healthy human T cell. Image: Wikimedia Commons: NIAID/NIH
    0


    User Feedback

    Recommended Comments

    Guest Coloradosue

    Posted

    In plain English, would someone please explain what this information says. The majority of people who read this will no doubt ask " Is this a good thing?". How about next time another article like this comes around be aware that a lot of us who have celiac disease are always interested in new information that may someday make our lives tolerable. Genetically, there is no cure. But, any new drug, vaccine, pill, etc., that may help people in the future is always worth reading about.

    BTW, why does the medical profession not recommend a celiac disease test to men and women for the genetic markers of celiac disease before becoming pregnant????? Especially since Celiac Disease is more previlant? Had I known, I would not have had a child who also has Celiac Disease and passed it on to her two sons, my grandsons. The only warning she had was after I had been diagnosed in my early 50's. Mine was switched "on" by the double pneumonia. Hers was turned "on" by a kidney infection. One son had his turned "on" from a bacterial infection. Her youngest is showing signs as well. Just Asking!!!!!

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoticons maximum are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   13 Members, 1 Anonymous, 1,131 Guests (See full list)

  • Related Articles

    Jefferson Adams
    Celiac.com 05/16/2012 - Goblet cells that line the intestine and secrete mucous are emerging as a possible target for treating inflammatory bowel disease, celiac disease and food allergies.
    With every meal, immune cells in the intestine stand guard against harmful bacteria but permit vitamins and nutrients to pass. The small intestine is protected from harmful pathogens by a layer of mucus secreted from goblet cells.
    A research team at Washington University School of Medicine in St. Louis have identified the cells that protect the intestine against food antigens, or proteins so that the immune system does not begin an attack.
    The discovery of goblet cells in mice shines new light on their role in the lining of the intestine, and gives scientists a potential target for treatments against inflammatory bowel disease, celiac disease and food allergies.
    To accomplish their task, the researchers used a new imaging technique that allows them to observe the inner workings of the intestine in a living mouse in real time. For their study, they fed marked sugar to mice and observed antigens as they were passed by goblet cells to dendritic cells.
    Dendritic cells play a key role in the immune system. But until now, scientists thought that intestinal goblet cells were only responsible for secreting mucus.
    Miller and Newberry also studied healthy human intestinal tissue from patients undergoing weight-loss surgery.  Those results showed that goblet cells perform the same function in people as in mice. This indicates that the cells may be solid drug targets for treating inflammatory bowel disease and other intestinal problems.
    After studying normal, healthy mice, the researchers are now using the same imaging technique to look at how goblet cells and dendritic cells might function differently when inflammation or infection occurs.
    They also plan to study mucus-producing goblet cells in other tissues, such as the lung, to assess whether they are working the same way elsewhere in the body.
    Miller says the results are important because they help scientists understand that intestinal immune responses may depend as much on the ability of goblet cells to transport antigens to dendritic cells as on what the dendritic cells then do with those antigens.

    Source:
    Nature. 2012 Mar 14;483(7389):345-9. doi: 10.1038/nature10863.

    Jefferson Adams
    Celiac.com 12/05/2012 - Regulatory T cells (Tregs) are play a pivotal role in helping our bodies tolerate self-antigens and dietary proteins. Interleukin (IL)-15 is a cytokine that is overly present in the intestines of patients with celiac disease.
    Studies have shown that Interleukin (IL)-15 does not interfere with the generation of functional Tregs, but causes human T cells to resist Treg suppression.
    To better understand how control of effector T cells by regulatory T cells is inhibited, a team of researchers compared Treg numbers and responses of intestinal and peripheral T lymphocytes to suppression by Tregs in celiac disease patients and in a control group.
    The research team included N.B. Hmida, M. Ben Ahmed, A. Moussa, M.B. Rejeb, Y. Said, N. Kourda, B. Meresse, M. Abdeladhim, H. Louzir, and N. Cerf-Bensussan. They are affiliated with the Department of Clinical Immunology and the Institut Pasteur de Tunis in Tunis, Tunisia.
    For their study, the team isolated intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) from duodenal biopsy specimens of patients with celiac disease and in a control group.
    The team then purified CD4+CD25+ T lymphocytes (Tregs) from blood. By analyzing anti-CD3-induced proliferation and interferon (IFN)-γ production in the presence or absence of peripheral Tregs, they were able to test responses of IELs, of LPLs, and peripheral lymphocytes (PBLs) to suppression by Tregs. The team used flow cytometry to measure lamina propria and peripheral CD4+CD25+FOXP3+ T cells.
    They found that, although patients with active celiac disease showed significantly increased percentages of CD4+CD25+FOXP3+ LPLs, they also showed less inhibited proliferation and IFN-γ production of intestinal T lymphocytes by autologous or heterologous Tregs (P < 0.01). IEL for subjects with celiac disease showed no response to Tregs.
    Also, the team noted resistance of LPLs and PBLs to Treg suppression in patients with villous atrophy who had substantially higher blood levels of IL-15 compared with patients without villous atrophy and controls.
    From their results, the research team concludes that effector T lymphocytes in people with active celiac disease become resistant to suppression by Tregs.
    This resistance may result in loss of tolerance to gluten, and to self-antigens.
    Source:
    Am J Gastroenterol. 2012 Apr;107(4):604-11. doi: 10.1038/ajg.2011.397. Epub 2011 Nov 22.

    Jefferson Adams
    Celiac.com 04/24/2013 - Doctors classify refractory celiac disease (RCD) depending on the presence or absence of monoclonal expansions of intraepithelial lymphocytes (IELs) with an aberrant immunophenotype.
    A team of researchers recently set out to determine whether IEL parameters have any connection with mortality and morbidity in cases of refractory celiac disease.
    The research team included C. Arguelles-Grande, P. Brar, P. H. Green, and G. Bhagat. They are variously affiliated with the Celiac Disease Center, and the Departments of Medicine, Pathology and Cell Biology, at Columbia University Medical Center in New York, NY.
    The team used immunohistochemistry to assess IEL phenotype and polymerase chain reaction to determine T-cell receptor (TCR) gene rearrangement in 67 patients with RCD type I, and six patients with RCD type II. They considered a monoclonal TCR gene rearrangement and presence of greater than 50% CD3 CD8 IELs to be abnormal.
    They used Kaplan-Meier and Cox proportional hazard analyses to determine the time to worsening of clinical symptoms and the predictors of worsening. The team found 30 patients with less than 50% CD3 CD8 IELs, and eight with monoclonal TCR rearrangements. Three patients died and 40 suffered clinical worsening despite treatment.
    Estimated 5-year survival rates were 100% in patients with greater than 50% CD3 CD8 IELs and polyclonal TCR, but just 88% in patients with less than 50% CD3 CD8 IELs and 50% in patients with monoclonal TCR.
    All patients with monoclonal TCR gene rearrangement with less than 50% CD3 CD8 IELs showed shorter average time to clinical worsening of symptoms (11 mo), when compared to patients with less than 50% CD3 CD8 IELs alone (21 mo), polyclonal TCR (38 mo), or greater than 50% CD3 CD8 IELs alone (66 mo).
    After the team adjusted for age and gender, they found that the presence of less than 50% CD3 CD8 IELs was the only factor associated with increased risk for clinical worsening, despite negative celiac blood screens (hazard ratio=4.879; 95% confidence interval, 1.785-13.336; P=0.002).
    This means that RCD patients with <50% CD3 CD8 IELs are at risk for clinical worsening, and that RCD patients who also show monoclonal TCR gene rearrangement have higher mortality rates.
    Overall, the assessment of IEL phenotype and TCR gene rearrangement can provide important information regarding morbidity and risk of death in cases of RCD.
    Source:
     J Clin Gastroenterol. 2013 Mar 6.

    Jefferson Adams
    Celiac.com 06/20/2014 - Celiac disease is a T cell–mediated disease triggered by the protein in wheat gluten. More than 9 out of 10 of people with celiac disease carry human leukocyte antigen (HLA)-DQ2 locus.
    A team of researchers recently set out to determine if T-cell receptor recognition of HLA-DQ2–gliadin complexes was connected with celiac disease.
    The researchers included Jan Petersen, Veronica Montserrat, Jorge R Mujico, Khai Lee Loh, Dennis X Beringer, Menno van Lummel, Allan Thompson, M Luisa Mearin, Joachim Schweizer, Yvonne Kooy-Winkelaar, Jeroen van Bergen, Jan W Drijfhout, Wan-Ting Kan, Nicole L La Gruta, Robert P Anderson, Hugh H Reid, Frits Koning, and Jamie Ross.
    They are variously affiliated with the Department of Biochemistry and Molecular Biology at the School of Biomedical Sciences, and the Australian Research Council Centre of Excellence in Advanced Molecular Imaging at Monash University in Clayton, Victoria, Australia, the Department of Pediatrics, and the Department of Immunohematology and Blood Transfusion at Leiden University Medical Center in Leiden, The Netherlands, the Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, at the University of Melbourne in Parkville, Victoria, Australia, ImmusanT, Inc., in Cambridge, Massachusetts, USA, and the Institute of Infection and Immunity at Cardiff University School of Medicine in Heath Park, Cardiff, UK.
    The team first determined T-cell receptor (TCR) usage and fine specificity of patient-derived T-cell clones specific for two epitopes from wheat gliadin, DQ2.5-glia-α1a and DQ2.5-glia-α2.
    They also determined the ternary structures of four distinct biased TCRs specific for those epitopes. They were able to establish a basis for the biased TCR usage through mutagenesis and affinity measurements, together with the fact that all three TCRs specific for DQ2.5-glia-α2 docked centrally above HLA-DQ2. They found that a non–germline–encoded arginine residue within the CDR3β loop served as key of this common docking footprint.
    Although the TCRs specific for DQ2.5-glia-α1a and DQ2.5-glia-α2 docked similarly, their interactions with the respective gliadin determinants differed markedly, thereby providing a basis for epitope specificity.
    This is the first time a research team has determined that T-cell receptor recognition of HLA-DQ2–gliadin complexes was connected with celiac disease. Further study is needed to better understand the nature of their relationship.
    Source:
    NATURE STRUCTURAL & MOLECULAR BIOLOGY

  • Recent Articles

    Jefferson Adams
    Celiac.com 04/20/2018 - A digital media company and a label data company are teaming up to help major manufacturers target, reach and convert their desired shoppers based on dietary needs, such as gluten-free diet. The deal could bring synergy in emerging markets such as the gluten-free and allergen-free markets, which represent major growth sectors in the global food industry. 
    Under the deal, personalized digital media company Catalina will be joining forces with Label Insight. Catalina uses consumer purchases data to target shoppers on a personal base, while Label Insight works with major companies like Kellogg, Betty Crocker, and Pepsi to provide insight on food label data to government, retailers, manufacturers and app developers.
    "Brands with very specific product benefits, gluten-free for example, require precise targeting to efficiently reach and convert their desired shoppers,” says Todd Morris, President of Catalina's Go-to-Market organization, adding that “Catalina offers the only purchase-based targeting solution with this capability.” 
    Label Insight’s clients include food and beverage giants such as Unilever, Ben & Jerry's, Lipton and Hellman’s. Label Insight technology has helped the Food and Drug Administration (FDA) build the sector’s very first scientifically accurate database of food ingredients, health attributes and claims.
    Morris says the joint partnership will allow Catalina to “enhance our dataset and further increase our ability to target shoppers who are currently buying - or have shown intent to buy - in these emerging categories,” including gluten-free, allergen-free, and other free-from foods.
    The deal will likely make for easier, more precise targeting of goods to consumers, and thus provide benefits for manufacturers and retailers looking to better serve their retail food customers, especially in specialty areas like gluten-free and allergen-free foods.
    Source:
    fdfworld.com

    Jefferson Adams
    Celiac.com 04/19/2018 - Previous genome and linkage studies indicate the existence of a new disease triggering mechanism that involves amino acid metabolism and nutrient sensing signaling pathways. In an effort to determine if amino acids might play a role in the development of celiac disease, a team of researchers recently set out to investigate if plasma amino acid levels differed among children with celiac disease compared with a control group.
     
    The research team included Åsa Torinsson Naluai, Ladan Saadat Vafa, Audur H. Gudjonsdottir, Henrik Arnell, Lars Browaldh, and Daniel Agardh. They are variously affiliated with the Institute of Biomedicine, Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; the Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden; the Department of Clinical Science and Education, Karolinska Institute, Sodersjukhuset, Stockholm, Sweden; the Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; the Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; and with the Nathan S Kline Institute in the U.S.A.
    First, the team used liquid chromatography-tandem mass spectrometry (LC/MS) to analyze amino acid levels in fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls. They then crafted a general linear model using age and experimental effects as covariates to compare amino acid levels between children with celiac disease and non-celiac control subjects.
    Compared with the control group, seven out of twenty-three children with celiac disease showed elevated levels of the the following amino acids: tryptophan; taurine; glutamic acid; proline; ornithine; alanine; and methionine.
    The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects.
    This study shows that amino acids can influence inflammation and may play a role in the development of celiac disease.
    Source:
    PLoS One. 2018; 13(3): e0193764. doi: & 10.1371/journal.pone.0193764

    Jefferson Adams
    Celiac.com 04/18/2018 - To the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service animals.
    If you’ve flown anywhere lately, you may have seen them. People flying with their designated “emotional support” animals. We’re not talking genuine service animals, like seeing eye dogs, or hearing ear dogs, or even the Belgian Malinois that alerts its owner when there is gluten in food that may trigger her celiac disease.
    Now, to be honest, some of those animals in question do perform a genuine service for those who need emotional support dogs, like veterans with PTSD.
    However, many of these animals are not service animals at all. Many of these animals perform no actual service to their owners, and are nothing more than thinly disguised pets. Many lack proper training, and some have caused serious problems for the airlines and for other passengers.
    Now the major airlines are taking note and introducing stringent requirements for service animals.
    Delta was the first to strike. As reported by the New York Times on January 19: “Effective March 1, Delta, the second largest US airline by passenger traffic, said it will require passengers seeking to fly with pets to present additional documents outlining the passenger’s need for the animal and proof of its training and vaccinations, 48 hours prior to the flight.… This comes in response to what the carrier said was a 150 percent increase in service and support animals — pets, often dogs, that accompany people with disabilities — carried onboard since 2015.… Delta said that it flies some 700 service animals a day. Among them, customers have attempted to fly with comfort turkeys, gliding possums, snakes, spiders, and other unusual pets.”
    Fresh from an unsavory incident with an “emotional support” peacock incident, United Airlines has followed Delta’s lead and set stricter rules for emotional support animals. United’s rules also took effect March 1, 2018.
    So, to the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service and emotional support animals.
    Source:
    cnbc.com

    admin
    WHAT IS CELIAC DISEASE?
    Celiac disease is an autoimmune condition that affects around 1% of the population. People with celiac disease suffer an autoimmune reaction when they consume wheat, rye or barley. The immune reaction is triggered by certain proteins in the wheat, rye, or barley, and, left untreated, causes damage to the small, finger-like structures, called villi, that line the gut. The damage occurs as shortening and villous flattening in the lamina propria and crypt regions of the intestines. The damage to these villi then leads to numerous other issues that commonly plague people with untreated celiac disease, including poor nutritional uptake, fatigue, and myriad other problems.
    Celiac disease mostly affects people of Northern European descent, but recent studies show that it also affects large numbers of people in Italy, China, Iran, India, and numerous other places thought to have few or no cases.
    Celiac disease is most often uncovered because people experience symptoms that lead them to get tests for antibodies to gluten. If these tests are positive, then the people usually get biopsy confirmation of their celiac disease. Once they adopt a gluten-free diet, they usually see gut healing, and major improvements in their symptoms. 
    CLASSIC CELIAC DISEASE SYMPTOMS
    Symptoms of celiac disease can range from the classic features, such as diarrhea, upset stomach, bloating, gas, weight loss, and malnutrition, among others.
    LESS OBVIOUS SYMPTOMS
    Celiac disease can often less obvious symptoms, such fatigue, vitamin and nutrient deficiencies, anemia, to name a few. Often, these symptoms are regarded as less obvious because they are not gastrointestinal in nature. You got that right, it is not uncommon for people with celiac disease to have few or no gastrointestinal symptoms. That makes spotting and connecting these seemingly unrelated and unclear celiac symptoms so important.
    NO SYMPTOMS
    Currently, most people diagnosed with celiac disease do not show symptoms, but are diagnosed on the basis of referral for elevated risk factors. 

    CELIAC DISEASE VS. GLUTEN INTOLERANCE
    Gluten intolerance is a generic term for people who have some sort of sensitivity to gluten. These people may or may not have celiac disease. Researchers generally agree that there is a condition called non-celiac gluten sensitivity. That term has largely replaced the term gluten-intolerance. What’s the difference between celiac disease and non-celiac gluten-sensitivity? 
    CELIAC DISEASE VS. NON-CELIAC GLUTEN SENSITIVITY (NCGS)
    Gluten triggers symptoms and immune reactions in people with celiac disease. Gluten can also trigger symptoms in some people with NCGS, but the similarities largely end there.

    There are four main differences between celiac disease and non-celiac gluten sensitivity:
    No Hereditary Link in NCGS
    Researchers know for certain that genetic heredity plays a major role in celiac disease. If a first-degree relative has celiac disease, then you have a statistically higher risk of carrying genetic markers DQ2 and/or DQ8, and of developing celiac disease yourself. NCGS is not known to be hereditary. Some research has shown certain genetic associations, such as some NCGS patients, but there is no proof that NCGS is hereditary. No Connection with Celiac-related Disorders
    Unlike celiac disease, NCGS is so far not associated with malabsorption, nutritional deficiencies, or a higher risk of autoimmune disorders or intestinal malignancies. No Immunological or Serological Markers
    People with celiac disease nearly always test positive for antibodies to gluten proteins. Researchers have, as yet, identified no such antobodies or serologic markers for NCGS. That means that, unlike with celiac disease, there are no telltale screening tests that can point to NCGS. Absence of Celiac Disease or Wheat Allergy
    Doctors diagnose NCGS only by excluding both celiac disease, an IgE-mediated allergy to wheat, and by the noting ongoing adverse symptoms associated with gluten consumption. WHAT ABOUT IRRITABLE BOWEL SYNDROME (IBS) AND IRRITABLE BOWEL DISEASE (IBD)?
    IBS and IBD are usually diagnosed in part by ruling out celiac disease. Many patients with irritable bowel syndrome are sensitive to gluten. Many experience celiac disease-like symptoms in reaction to wheat. However, patients with IBS generally show no gut damage, and do not test positive for antibodies to gliadin and other proteins as do people with celiac disease. Some IBS patients also suffer from NCGS.

    To add more confusion, many cases of IBS are, in fact, celiac disease in disguise.

    That said, people with IBS generally react to more than just wheat. People with NCGS generally react to wheat and not to other things, but that’s not always the case. Doctors generally try to rule out celiac disease before making a diagnosis of IBS or NCGS. 
    Crohn’s Disease and celiac disease share many common symptoms, though causes are different.  In Crohn’s disease, the immune system can cause disruption anywhere along the gastrointestinal tract, and a diagnosis of Crohn’s disease typically requires more diagnostic testing than does a celiac diagnosis.  
    Crohn’s treatment consists of changes to diet and possible surgery.  Up to 10% of Crohn's patients can have both of conditions, which suggests a genetic connection, and researchers continue to examine that connection.
    Is There a Connection Between Celiac Disease, Non-Celiac Gluten Sensitivity and Irritable Bowel Syndrome? Large Number of Irritable Bowel Syndrome Patients Sensitive To Gluten Some IBD Patients also Suffer from Non-Celiac Gluten Sensitivity Many Cases of IBS and Fibromyalgia Actually Celiac Disease in Disguise CELIAC DISEASE DIAGNOSIS
    Diagnosis of celiac disease can be difficult. 

    Perhaps because celiac disease presents clinically in such a variety of ways, proper diagnosis often takes years. A positive serological test for antibodies against tissue transglutaminase is considered a very strong diagnostic indicator, and a duodenal biopsy revealing villous atrophy is still considered by many to be the diagnostic gold standard. 
    But this idea is being questioned; some think the biopsy is unnecessary in the face of clear serological tests and obvious symptoms. Also, researchers are developing accurate and reliable ways to test for celiac disease even when patients are already avoiding wheat. In the past, patients needed to be consuming wheat to get an accurate test result. 
    Celiac disease can have numerous vague, or confusing symptoms that can make diagnosis difficult.  Celiac disease is commonly misdiagnosed by doctors. Read a Personal Story About Celiac Disease Diagnosis from the Founder of Celiac.com Currently, testing and biopsy still form the cornerstone of celiac diagnosis.
    TESTING
    There are several serologic (blood) tests available that screen for celiac disease antibodies, but the most commonly used is called a tTG-IgA test. If blood test results suggest celiac disease, your physician will recommend a biopsy of your small intestine to confirm the diagnosis.
    Testing is fairly simple and involves screening the patients blood for antigliadin (AGA) and endomysium antibodies (EmA), and/or doing a biopsy on the areas of the intestines mentioned above, which is still the standard for a formal diagnosis. Also, it is now possible to test people for celiac disease without making them concume wheat products.

    BIOPSY
    Until recently, biopsy confirmation of a positive gluten antibody test was the gold standard for celiac diagnosis. It still is, but things are changing fairly quickly. Children can now be accurately diagnosed for celiac disease without biopsy. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide.

    WHY A GLUTEN-FREE DIET?
    Currently the only effective, medically approved treatment for celiac disease is a strict gluten-free diet. Following a gluten-free diet relieves symptoms, promotes gut healing, and prevents nearly all celiac-related complications. 
    A gluten-free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. This is a difficult task as there are many hidden sources of gluten found in the ingredients of many processed foods. Still, with effort, most people with celiac disease manage to make the transition. The vast majority of celiac disease patients who follow a gluten-free diet see symptom relief and experience gut healing within two years.
    For these reasons, a gluten-free diet remains the only effective, medically proven treatment for celiac disease.
    WHAT ABOUT ENZYMES, VACCINES, ETC.?
    There is currently no enzyme or vaccine that can replace a gluten-free diet for people with celiac disease.
    There are enzyme supplements currently available, such as AN-PEP, Latiglutetenase, GluteGuard, and KumaMax, which may help to mitigate accidental gluten ingestion by celiacs. KumaMax, has been shown to survive the stomach, and to break down gluten in the small intestine. Latiglutenase, formerly known as ALV003, is an enzyme therapy designed to be taken with meals. GluteGuard has been shown to significantly protect celiac patients from the serious symptoms they would normally experience after gluten ingestion. There are other enzymes, including those based on papaya enzymes.

    Additionally, there are many celiac disease drugs, enzymes, and therapies in various stages of development by pharmaceutical companies, including at least one vaccine that has received financial backing. At some point in the not too distant future there will likely be new treatments available for those who seek an alternative to a lifelong gluten-free diet. 

    For now though, there are no products on the market that can take the place of a gluten-free diet. Any enzyme or other treatment for celiac disease is intended to be used in conjunction with a gluten-free diet, not as a replacement.

    ASSOCIATED DISEASES
    The most common disorders associated with celiac disease are thyroid disease and Type 1 Diabetes, however, celiac disease is associated with many other conditions, including but not limited to the following autoimmune conditions:
    Type 1 Diabetes Mellitus: 2.4-16.4% Multiple Sclerosis (MS): 11% Hashimoto’s thyroiditis: 4-6% Autoimmune hepatitis: 6-15% Addison disease: 6% Arthritis: 1.5-7.5% Sjögren’s syndrome: 2-15% Idiopathic dilated cardiomyopathy: 5.7% IgA Nephropathy (Berger’s Disease): 3.6% Other celiac co-morditities include:
    Crohn’s Disease; Inflammatory Bowel Disease Chronic Pancreatitis Down Syndrome Irritable Bowel Syndrome (IBS) Lupus Multiple Sclerosis Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Psoriasis Rheumatoid Arthritis Scleroderma Turner Syndrome Ulcerative Colitis; Inflammatory Bowel Disease Williams Syndrome Cancers:
    Non-Hodgkin lymphoma (intestinal and extra-intestinal, T- and B-cell types) Small intestinal adenocarcinoma Esophageal carcinoma Papillary thyroid cancer Melanoma CELIAC DISEASE REFERENCES:
    Celiac Disease Center, Columbia University
    Gluten Intolerance Group
    National Institutes of Health
    U.S. National Library of Medicine
    Mayo Clinic
    University of Chicago Celiac Disease Center

    Jefferson Adams
    Celiac.com 04/17/2018 - Could the holy grail of gluten-free food lie in special strains of wheat that lack “bad glutens” that trigger the celiac disease, but include the “good glutens” that make bread and other products chewy, spongey and delicious? Such products would include all of the good things about wheat, but none of the bad things that might trigger celiac disease.
    A team of researchers in Spain is creating strains of wheat that lack the “bad glutens” that trigger the autoimmune disorder celiac disease. The team, based at the Institute for Sustainable Agriculture in Cordoba, Spain, is making use of the new and highly effective CRISPR gene editing to eliminate the majority of the gliadins in wheat.
    Gliadins are the gluten proteins that trigger the majority of symptoms for people with celiac disease.
    As part of their efforts, the team has conducted a small study on 20 people with “gluten sensitivity.” That study showed that test subjects can tolerate bread made with this special wheat, says team member Francisco Barro. However, the team has yet to publish the results.
    Clearly, more comprehensive testing would be needed to determine if such a product is safely tolerated by people with celiac disease. Still, with these efforts, along with efforts to develop vaccines, enzymes, and other treatments making steady progress, we are living in exciting times for people with celiac disease.
    It is entirely conceivable that in the not-so-distant future we will see safe, viable treatments for celiac disease that do not require a strict gluten-free diet.
    Read more at Digitaltrends.com , and at Newscientist.com