• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,466
    Total Members
    3,093
    Most Online
    3sth3rcho
    Newest Member
    3sth3rcho
    Joined
  • 0

    Gut Bacteria Play Significant Role in Gluten Metabolism


    Jefferson Adams

    Celiac.com 08/06/2014 - Although the role of human digestive proteases in gluten proteins is quite well known, researchers don’t know much about the role of gut bacteria in the metabolism of these proteins. A research team recently set out to explore the diversity of the cultivable human gut microbiome involved in gluten metabolism.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Photo: CC--Dhilung KiratTheir goal was to isolate and characterize human gut bacteria involved in the metabolism of gluten proteins. The team included Alberto Caminero, Alexandra R. Herrán, Esther Nistal, Jenifer Pérez-Andrés, Luis Vaquero, Santiago Vivas, José María G. Ruiz de Morales, Silvia M. Albillos and Javier Casqueiro.

    They are variously associated with the Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), the Área de Microbiología, Facultad de Biología y Ciencias Ambientales, and the Instituto de Biomedicina (IBIOMED) Campus de Vegazana at the Universidad de León, León, Spain, and with the Departamento de Gastroenterología, Hospital de León, the Departamento de Inmunología y, Hospital de León, and with Instituto de Biotecnología (INBIOTEC) de León all in León, Spain.

    For their study, they cultured twenty-two human fecal samples, with gluten as the principal nitrogen source. They also isolated 144 strains from 35 bacterial species potentially involved in gluten metabolism in the human gut. They found 94 strains that metabolise gluten, while 61 strains showed an extracellular proteolytic activity against gluten proteins.

    In patients with celiac disease, several strains exhibited peptidasic activity towards the 33-mer peptide, an immune-triggering peptide. Most of the gluten-metabolizing strains belong to the phyla Firmicutes and Actinobacteria, mainly from the genera Lactobacillus, Streptococcus, Staphylococcus, Clostridium and Bifidobacterium.

    Their findings show that the human intestine hosts numerous bacteria that can use gluten proteins and peptides for food. These bacteria could have an important role in gluten metabolism and could give rise to new treatments for celiac disease.

    Source:


    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   7 Members, 1 Anonymous, 347 Guests (See full list)

  • Related Articles

    Jefferson Adams
    Celiac.com 05/15/2009 - Certain proteins found in the gluten of wheat, rye and barley trigger adverse responses in people with gluten intolerance and celiac disease. This happens when the offending gluten proteins encounter the immune systems of susceptible individuals, triggering a CD4+ T-cell mediated immune response, together with inflammation of the small intestine. However, a number of gluten proteins contain no T-cell stimulatory epitopes, and so trigger no such adverse immune response. So, not all gluten is equally offensive to celiacs, and some may be both well tolerated and useful for making better bread.
    Gluten proteins are found in multiple gene sites on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD).
    Gluten is the stuff that makes bread delightfully chewy, among other desirable properties, so being able to successfully incorporate non-offending gluten into bread recipes might yield better breads that are safe for consumption by folks with celiac disease. Obviously, being able to produce high-quality, celiac-safe bread on a commercial scale would be of tremendous benefit for both producers and consumers. Currently, most gluten-free bread contains no gluten, as it has been difficult or impractical to separate the offending proteins from the non-offending proteins.
    Recently, a team of researchers based in the Netherlands attempted to  remove celiac disease-related protein from Chinese Spring wheat while maintaining the beneficial bread-baking properties.
    The team was made up of Hetty C. van den Broeck, Teun W. J. M. van Herpen, Cees Schuit, Elma M. J. Salentijn, Liesbeth Dekking, Dirk Bosch, Rob J. Hamer, Marinus J. M. Smulders, Ludovicus J. W. J. Gilissen and Ingrid M. van der Meer.
    The team used a set of deletion lines of Triticum aestivum cv. Chinese Spring to assess the results of removing individual gluten sites on both the level of the T-cell stimulatory epitope in the gluten proteome and the favorable qualities of the flour.
    To measure the reduction of T-cell stimulatory epitopes, the team used monoclonal antibodies that recognize T-cell epitopes contained in gluten proteins. They then clinically tested the deletion lines for their dough mixing properties and dough composition.
    The team's attempts to remove the alpha-gliadin site from the short arm of chromosome 6 of the D-genome (6DS) yielded in a favorable decrease in the presence of T-cell stimulatory epitopes, but also yielded a significantly loss of favorable baking properties.
    However, by deleting the omega-gliadin, gamma-gliadin, and LMW-GS locations from the short arm of chromosome 1 of the D-genome (1DS), researchers were able to strip offending T-cell stimulatory epitopes from the proteome while maintaining technological properties.
    The team concludes that their data hold important implications for lowering the quantity of T-cell stimulatory epitopes in wheat, and promoting the creation of celiac-safe wheat varieties that will potentially yield breads of higher quality than currently available.

    BMC Plant Biology 2009, 9:41
     

    Jefferson Adams
    Celiac.com 08/20/2009 - For the first time, a team of celiac disease researchers has discovered a role for the main inherited celiac-associated genetic variation, connecting altered NF-kB signalling with risk variants associated with Celiac disease in TNFAIP3 and REL.
    The research team was made up of G. Trynka, A. Zhernakova, J. Romanos, L. Franke, K. A. Hunt, G. Turner, M. Bruinenberg, G. A. Heap, M. Platteel,1 A. W. Ryan, C. de Kovel, G. K. T. Holmes, P. D. Howdle, J. R. F. Walters, D. S. Sanders, C. J. J. Mulder, M. L. Mearin, W. H. M. Verbeek, V. Trimble, F. M. Stevens, D. Kelleher, D. Barisani, M. T. Bardella, R. McManus, D. A. van Heel, C. Wijmenga.
    An earlier celiac disease genome-wide association study (GWAS) identified risk variants in the human leucocyte antigen (HLA) region and eight new risk areas.
    To find more celiac disease locations, the research team chose to examine 458 single nucleotide polymorphisms (SNPs) that exhibited weaker ties in the GWAS for genotyping and analysis in four independent cohorts. The 458 SNPs were found among 1682 cases and 3258 controls from UK, Irish and Dutch populations.
    The team combined the results with the original GWAS cohort involving 767 UK cases and 1422 controls), in which six SNPs showed association with p,1610. Those six were then genotyped in an independent Italian celiac cohort (538 cases and 593 controls). The research team found two new celiac disease risk regions: 6q23.3 (OLIG3-TNFAIP3) and 2p16.1 (REL).
    In the final combined analysis of all 2987 cases and 5273 controls, both regions achieved genome-wide significance (rs2327832 p=1.3610, and rs842647 p=5.2610).
    The researchers used RNA isolated from biopsies and from whole
    blood RNA to look at gene expression. They observed no changes in either gene expression, or in the correlation of genotype with gene expression.
    From these results, the research team concluded that both TNFAIP3 (A20, at the protein level) and REL are key mediators in the nuclear factor kappa B (NF-kB) inflammatory signalling pathway.
    For the first time, researchers have identified a role for main inherited variation in this important biological pathway that predisposes individuals to celiac disease.
    Currently, the HLA risk factors and the 10 established non-HLA risk factors provide an explanation for about 40% of inheritance factors for celiac disease.
    Clearly, more research is needed to isolate the other 60% of inheritability factors for celiac disease. Success in this very important area promises to open up the understanding of celiac disease, and to help speed new treatments, and possibly a cure.

    Gut 2009;58:1078–1083.


    Jefferson Adams
    Celiac,com 10/08/2010 - Many people are familiar with probiotics, such as acidophilus, Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus case, which promote beneficial gut bacteria, and are commonly found in yogurt, kefir and other fermented milk products.
    But how many of us have heard of polysaccharides, which are a particular kind of carbohydrate made up of of a number of monosaccharides joined together by something called glycosidic bonds.
    On a simpler note, polysaccharides are also known as pre-biotics, because they serve as fuel for probiotic bacteria, and help to promote healthy ratios of beneficial bacteria to non-beneficial bacteria in the gut.
    It is well-known among scientists that diet has a major influence on the health and diversity of gut microbiota. People with celiac disease must follow a gluten-free diet in order to avoid associated damage and health disorders.
    When people with celiac disease follow a gluten-free diet, their celiac symptoms disappear and their gut begins to heal itself from the damage. The health effects of the diet for people with celiac disease are overwhelmingly positive.
    However, there is some evidence that by eliminating gluten, people with celiac disease are making themselves susceptible to a plunge in beneficial gut bacteria, and an elevated ratio of bad-to-good gut bacteria. This may have immune-system implications for those people.
    To test this hypothesis, a team of scientists recently conducted a preliminary study to determine if a gluten-free diet alone could change the make-up and immune properties of gut microbiota. The team included G. De Palma, I. Nadal, M. C. Collado, and Y. Sanz. Their full results appear in theSeptember, 2009 issue of the British Journal of Nutrition.
    To briefly summarize their study, the team enrolled ten healthy individuals without celiac disease, averaging just over 30 years of age. They put these people on a gluten-free diet for a month. Subsequent analysis of fecal microbiota and dietary intake showed a decrease in healthy gut bacteria, coupled with an increase of unhealthy bacteria that corresponded with reduced intake of polysaccharides after following the gluten-free diet. Another healthy control group that ate a diet that contained gluten, and thus provided polysaccharides. 
    In addition representing an adversely change in gut microbiota, the samples taken while the individuals followed a gluten-free diet also exerted reduced immune stimulatory effects on peripheral blood mononuclear cells than those of subjects on a regular gluten-containing, polysaccharide-rich diet.
    Should these findings be confirmed by subsequent studies, the results could call attention to a more comprehensive approach to proper dietary intake in people with celiac disease, including dietary counseling, and possible supplementation of the diet with polysaccharides.
    Source:

    Br J Nutr. 2009 Oct;102(8):1154-60.

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023