• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    71,819
    Total Members
    3,093
    Most Online
    Debbie1234
    Newest Member
    Debbie1234
    Joined
  • Announcements

    • admin

      Frequently Asked Questions About Celiac Disease   04/07/2018

      This Celiac.com FAQ on celiac disease will guide you to all of the basic information you will need to know about the disease, its diagnosis, testing methods, a gluten-free diet, etc.   Subscribe to Celiac.com's FREE weekly eNewsletter   What are the major symptoms of celiac disease? Celiac Disease Symptoms What testing is available for celiac disease?  Celiac Disease Screening Interpretation of Celiac Disease Blood Test Results Can I be tested even though I am eating gluten free? How long must gluten be taken for the serological tests to be meaningful? The Gluten-Free Diet 101 - A Beginner's Guide to Going Gluten-Free Is celiac inherited? Should my children be tested? Ten Facts About Celiac Disease Genetic Testing Is there a link between celiac and other autoimmune diseases? Celiac Disease Research: Associated Diseases and Disorders Is there a list of gluten foods to avoid? Unsafe Gluten-Free Food List (Unsafe Ingredients) Is there a list of gluten free foods? Safe Gluten-Free Food List (Safe Ingredients) Gluten-Free Alcoholic Beverages Distilled Spirits (Grain Alcohols) and Vinegar: Are they Gluten-Free? Where does gluten hide? Additional Things to Beware of to Maintain a 100% Gluten-Free Diet What if my doctor won't listen to me? An Open Letter to Skeptical Health Care Practitioners Gluten-Free recipes: Gluten-Free Recipes
  • 0

    HOW COMMON IS CELIAC DISEASE IN PATIENTS WITH AUTOIMMUNE HEPATITIS?


    Jefferson Adams

    Celiac.com 10/20/2014 - Researchers don’t have much data on rates of celiac disease in patients with autoimmune hepatitis (AIH). To better understand any connections between the two conditions, a Dutch research team recently set out to examine the rates of celiac disease in patients with autoimmune hepatitis.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Photo: CC--Massimo CatarinellaSpecifically, the team set out to investigate the relationship between AIH and celiac disease by assessing the prevalence of IgA tissue antitransglutaminase antibodies (TGA) and antiendomysium antibodies (EMA) in a large group of AIH patients.

    The research team N.M. van Gerven, S.F. Bakker, Y.S. de Boer, B.I. Witte, H. Bontkes, C.M. van Nieuwkerk, C.J Mulder, G. Bouma; and the Dutch AIH working group. They are variously affiliated with the Departments of Gastroenterology and Hepatology, Epidemiology and Biostatistics, and Medical Immunology at the VU University Medical Centre in Amsterdam, The Netherlands.

    For the first step in their study, the team used TGA antibody serology to determine the frequency of celiac disease in a group of 460 AIH patients. The team conducted EMA screens on any patients showing TGA positivity.

    They then used digital and written medical records to collect retrospective data on previously diagnosed celiac disease and patient characteristics, and compared those findings with archival data on the prevalence of celiac disease in the Netherlands. They found that six patients had a known history of celiac disease, but were currently in remission, as shown by negative TGA blood screens.

    In addition, ten of the 460 AIH patients (2.2%) showed positive IgA TGA. Positive EMA antibodies in these patients served to confirm celiac disease diagnosis.

    Overall, the team found celiac disease in 3.5% of AIH patients compared with just 0.35% in the general Dutch population (P<0.001).

    Discounting patients with either a primary biliary cirrhosis or primary sclerosing cholangitis overlap, the team found celiac disease in 11 (2.8%) AIH patients. This is the largest serological study to examine connections between AIH and celiac disease, and shows that patients with AIH have rates of celiac disease that are higher than those of the general population, but not as high as some studies have suggested.

    Still, the team advises doctors to consider the possibility of concurrent celiac disease in all AIH patients.

    Source:


    Image Caption: Photo: CC--Massimo Catarinella
    0


    User Feedback

    Recommended Comments



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoticons maximum are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   7 Members, 1 Anonymous, 334 Guests (See full list)

  • Related Articles

    Jefferson Adams

    Celiac.com 06/26/2007 - In a study published recently in the Scandinavian Journal of Gastroenterology, researchers found that celiac patients commonly have high rates of anti-Saccharomyces cerevisiae antibodies (ASCA). A team of researchers recently set out to assess the frequency anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with celiac disease.
    The team was made up of Dorsaf Toumi; Amani Manka&IUML;; Ramla Belhadj; Leila Ghedira-Besbes; Moncef Jeddi; and Ibtissem Ghedira. They used ELISA to evaluate blood serum for ASCA, IgG and IgA in 238 patients with celiac disease. The team used 80 non-celiac blood donors as a control group. The 238 study subjects were divided into separate groups as follows: 125 untreated celiac patients; 42 celiac patients following a strict gluten-free diet; and 71 celiac patients who did not follow a gluten-free diet.
    Celiac Patients Have Significantly Higher IgG and IgA Antibodies
    Compared to the control group, the 125 untreated celiacs showed a markedly higher frequency of ASCA (IgG or IgA). 27.2% for untreated against 3.7% for control (p=10-5). Among the 71 patients who did not follow a gluten-free diet the occurrence of ASCA was significantly higher in adults than in children (60% against 26.1%, p=0.004). In the 238 patient study group as a whole, ASCA was substantially higher in adults than in children. 35.4% adults showed positive results compared to 21.1% children (p=0.01). Of the 238 subjects 19% (p=0.001), both children and adult, were positive for ASCA IgG versus 6.3% (p=0.001) for ASCA IgA.
    ASCA IgG More Common Than ASCA IgA
    Overall, ASCA IgG was much more common than ASCA IgA. 19% of children and 33% of adults were positive for ASCA IgG compared to 6.3% of children and 12.5% for ASCA IgA. Of the 42 patients who followed a gluten-free diet, all children and 90.5% of adults were negative for ASCA IgG.
    Of the 125 patients with untreated celiac, 20% of children were positive (p=0.01), and 34% of adults were positive. Of those 71 patients who did not comply with a gluten-free diet, 60% of adults and 26.1% of children were positive for ASCA.
    The results of the study confirm that patients with celiac disease show a high rate of ASCA. There was no statistical difference between celiacs following a gluten-free diet and those without celiac disease.
    Scandinavian Journal of Gastroenterology, Volume 42, Issue 7 2007 , pages 821 - 826
     

    Jefferson Adams
    Celiac.com 06/13/2012 - In general, doctors and researchers know a good deal about how celiac disease works, and they are finding out more all the time. However, they know very little about non-celiac gluten sensitivity (NCGS).
    In an effort to learn more about non-celiac gluten sensitivity, a team of researchers recently carried out a study to measure the presence of somatization, personality traits, anxiety, depression, and health-related quality of life in NCGS individuals, and to compare the results with celiac disease patients and healthy control subjects. They also compared the response to gluten challenge between patients with non-celiac gluten sensitivity and those with celiac disease.
    The research team included M. Brottveit, P.O. Vandvik, S. Wojniusz, A. Løvik, K.E. Lundin, and B. Boye, of the Department of Gastroenterology at Oslo University Hospital, Ullevål in Oslo, Norway.
    In all, the team looked at 22 patients with celiac disease and 31 HLA-DQ2+ NCGS patients without celiac disease. All patients were following a gluten-free diet.
    Over a three day period, the team challenged 17 of the celiac disease patients with orally ingested gluten. They then recorded the symptoms reported by those patients. They did the same with a group of 40 healthy control subjects.
    The team then had both patients and healthy control subjects complete questionnaires regarding anxiety, depression, neuroticism and lie, hostility and aggression, alexithymia and health locus of control, physical complaints, and health-related quality of life.
    Interestingly, patients with non-celiac gluten sensitivity reported more abdominal (p = 0.01) and non-abdominal (p < 0.01) symptoms after the gluten challenge than patients with celiac disease. The increase in symptoms in non-celiac gluten sensitivity patients was not related to personality.
    However, the two groups both reported similar responses regarding personality traits, level of somatization, quality of life, anxiety, and depressive symptoms. Responses for both groups were about the same as for healthy controls.
    The results showed that patients with non-celiac gluten sensitivity did not show any tendencies toward general somatization, as both celiac disease patients and those with non-celiac gluten sensitivity showed low somatization levels.
    Source:
    Scand J Gastroenterol. 2012 Apr 23.

    Jefferson Adams
    Celiac.com 06/29/2012 - A group of researchers recently set out to study cases of positive tissue transglutaminase antibodies with negative endomysial antibodies to determine whether or not such cases amount to celiac disease.
    The team included Thomas Hornung; Pavel Gordins; Clare Parker; and Nicholas Thompson. They are variously affiliated with the departments of Gastroenterology, and Immunology at the Northern Deanery of Newcastle upon Tyne, and with the department of Gastroenterology at Freeman Hospital in Newcastle upon Tyne in the UK.
    The most sensitive and specific blood tests for diagnosing celiac disease are those that detect immunoglobulin A (IgA) antibodies against human tissue transglutaminase (tTGA) enzyme, and those that measure aspects of connective tissue covering individual smooth muscle fibers, endomysial antibodies (EMA).
    Because of the high sensitivity (up to 98%) and high specificity (around 96%) reported for the tTGA assay, detection of tTGA is currently the primary blood test used in screening for celiac disease.
    The tTGA test also has a high negative predictive value approaching 100%, which makes it an excellent test for excluding celiac disease in both high and low risk groups. In contrast, positive predictive value of the tTGA test is rather poor with values between 28.6% and 60.2% being reported in several studies.
    EMA, on the other hand, has extremely high specificity values close to 100% and positive predictive value values approaching 80%.[5 10] However, compared with tTGA, EMA has lower sensitivity, usually under 90%.
    This being the case, the present standard celiac disease screening strategy is to first use tTGA, and then confirm positive results using EMA. However, doing it this way, doctors often end up with a group of patients who show divergent test results.
    For their study, the researchers wanted to gauge the percentage of patients with positive tTGA and negative EMA, but who were confirmed with celiac disease upon biopsy, and to identify factors in these patients that may help to increase diagnostic accuracy in such patients.
    The research team identified 125 consecutive patients with positive tTGA and negative EMA, who subsequently underwent endoscopy with at least two biopsies from the second part of the duodenum.
    The team charted any tTGA result over 15 U/ml as positive. They excluded any patients with known celiac disease at the time of testing.
    They then reviewed patient notes to assess indications for celiac disease serological screening, including the presence of iron deficiency anaemia, and symptoms such as diarrhea or weight loss, and family history of celiac disease. They defined diarrhea as a bowel frequency of more than three times a day.
    They then assessed histological evidence of celiac disease based on subsequent duodenal biopsies, plus Marsh grading. In cases where patient histology was unclear, they relied on the clinical assessment of a consulting gastroenterologist. Unclear histology included minimal/mild increase in intraepithelial lymphocytes of not more than 30 per 100 enterocytes and without villous atrophy, plus mild villous blunting with no increase in intraepithelial lymphocytes.
    They then categorized patients as either celiac disease negative, or celiac disease positive. Patients with no histological evidence of celiac disease on duodenal biopsies or equivocal histology plus overall clinical impression of celiac disease absence were categorized as celiac disease negative. Patients with histological evidence of celiac disease on duodenal biopsies or equivocal histology plus overall clinical impression of celiac disease presence were categorized as celiac disease positive.
    To measure IgA anti-tTGA antibody the team used a commercially available enzyme linked immunosorbent assay called Aeskulisa, manufactured by Aesku Diagnostics GmbH in Wendelsheim, Germany.
    To detect IgA anti-EMA with the standard immunofluorescent method, they used commercial slides of monkey oesophagus sections (Euroimmun, Euroimmun AG, Lübeck, Germany). They used conjugated sheep antihuman IgA as a secondary antibody, relying on a test manufactured by Instrumentation Laboratory UK Ltd., in Warrington, UK.
    Overall, the team categorized 113 patients (90.4%) as celiac disease negative. Of these, 102 patients had no histological features of celiac disease, while 11 patients had unclear histology plus an overall clinical impression of not having celiac disease.
    They categorized twelve patients (9.6%) as celiac disease positive. Of these, 10 patients had positive histology, and two patients had unclear histology plus an overall clinical impression of having celiac disease.
    Of those with positive histology, 17% were Marsh grade I, 8% were Marsh grade II, 33% were Marsh grade IIIa, 17% were Marsh grade IIIb and 25% were Marsh grade IIIc. Those with celiac disease were more likely to be older and to have a higher tTGA level. The groups showed no difference in any clinical parameter.
    Source:
    Frontline Gastroenterol. 2012;3(2):81-83.

    Jefferson Adams
    A team of researchers recently took a look at how well the hepatitis B vaccine protected people with celiac disease over time. Specifically, they evaluated what is called long-term antibody persistence and immune memory to hepatitis B virus in adult celiac patients vaccinated as adolescents.
    The research team included F. Zingone, F. Morisco, A. Zanetti, L. Romanò, G. Portella, P. Capone, P. Andreozzi, R. Tortora, and C.Ciacci. They are affiliated with the Department of Clinical and Experimental Medicine of Federico II University of Naples in Italy.
    They set out to investigate the anti-HBs antibody persistence and immune memory to hepatitis B virus in adult celiacs vaccinated as adolescents, along with the effects of a booster administration in non-protected individuals.
    They found that, eleven years after receiving the initial vaccine dose, the percentage of vaccinees with blood levels ≥ 10 mIU/ml and antibody geometric mean concentrations (GMCs) were lower among celiac patients than among control subjects (68.6% vs 91.7%, p
    Patients with anti-HBs below 10 mIU/ml received a booster dose and were retested after two weeks to measure response levels.
    Post-booster anti-HBs levels were still
    The study shows that, compared with healthy control subjects, people with celiac disease have lower seroprotective levels of anti-HBs eleven years after main vaccination, in addition to having a substantially lower response rate to a booster dose of the hepatitis B vaccine.
    Do you have celiac disease? Have you had a hepatitis B vaccine? Have you had trouble getting proper immunity levels with the hepatitis B vaccine? Is this news to you? Share your comments below.
    Source:
    Vaccine. 2011 Jan 29;29(5):1005-8. doi: 10.1016/j.vaccine.2010.11.060.

  • Recent Articles

    Jefferson Adams
    Celiac.com 04/19/2018 - Previous genome and linkage studies indicate the existence of a new disease triggering mechanism that involves amino acid metabolism and nutrient sensing signaling pathways. In an effort to determine if amino acids might play a role in the development of celiac disease, a team of researchers recently set out to investigate if plasma amino acid levels differed among children with celiac disease compared with a control group.
     
    The research team included Åsa Torinsson Naluai, Ladan Saadat Vafa, Audur H. Gudjonsdottir, Henrik Arnell, Lars Browaldh, and Daniel Agardh. They are variously affiliated with the Institute of Biomedicine, Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; the Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden; the Department of Clinical Science and Education, Karolinska Institute, Sodersjukhuset, Stockholm, Sweden; the Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; the Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; and with the Nathan S Kline Institute in the U.S.A.
    First, the team used liquid chromatography-tandem mass spectrometry (LC/MS) to analyze amino acid levels in fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls. They then crafted a general linear model using age and experimental effects as covariates to compare amino acid levels between children with celiac disease and non-celiac control subjects.
    Compared with the control group, seven out of twenty-three children with celiac disease showed elevated levels of the the following amino acids: tryptophan; taurine; glutamic acid; proline; ornithine; alanine; and methionine.
    The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects.
    This study shows that amino acids can influence inflammation and may play a role in the development of celiac disease.
    Source:
    PLoS One. 2018; 13(3): e0193764. doi: & 10.1371/journal.pone.0193764

    Jefferson Adams
    Celiac.com 04/18/2018 - To the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service animals.
    If you’ve flown anywhere lately, you may have seen them. People flying with their designated “emotional support” animals. We’re not talking genuine service animals, like seeing eye dogs, or hearing ear dogs, or even the Belgian Malinois that alerts its owner when there is gluten in food that may trigger her celiac disease.
    Now, to be honest, some of those animals in question do perform a genuine service for those who need emotional support dogs, like veterans with PTSD.
    However, many of these animals are not service animals at all. Many of these animals perform no actual service to their owners, and are nothing more than thinly disguised pets. Many lack proper training, and some have caused serious problems for the airlines and for other passengers.
    Now the major airlines are taking note and introducing stringent requirements for service animals.
    Delta was the first to strike. As reported by the New York Times on January 19: “Effective March 1, Delta, the second largest US airline by passenger traffic, said it will require passengers seeking to fly with pets to present additional documents outlining the passenger’s need for the animal and proof of its training and vaccinations, 48 hours prior to the flight.… This comes in response to what the carrier said was a 150 percent increase in service and support animals — pets, often dogs, that accompany people with disabilities — carried onboard since 2015.… Delta said that it flies some 700 service animals a day. Among them, customers have attempted to fly with comfort turkeys, gliding possums, snakes, spiders, and other unusual pets.”
    Fresh from an unsavory incident with an “emotional support” peacock incident, United Airlines has followed Delta’s lead and set stricter rules for emotional support animals. United’s rules also took effect March 1, 2018.
    So, to the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service and emotional support animals.
    Source:
    cnbc.com

    admin
    WHAT IS CELIAC DISEASE?
    Celiac disease is an autoimmune condition that affects around 1% of the population. People with celiac disease suffer an autoimmune reaction when they consume wheat, rye or barley. The immune reaction is triggered by certain proteins in the wheat, rye, or barley, and, left untreated, causes damage to the small, finger-like structures, called villi, that line the gut. The damage occurs as shortening and villous flattening in the lamina propria and crypt regions of the intestines. The damage to these villi then leads to numerous other issues that commonly plague people with untreated celiac disease, including poor nutritional uptake, fatigue, and myriad other problems.
    Celiac disease mostly affects people of Northern European descent, but recent studies show that it also affects large numbers of people in Italy, China, Iran, India, and numerous other places thought to have few or no cases.
    Celiac disease is most often uncovered because people experience symptoms that lead them to get tests for antibodies to gluten. If these tests are positive, then the people usually get biopsy confirmation of their celiac disease. Once they adopt a gluten-free diet, they usually see gut healing, and major improvements in their symptoms. 
    CLASSIC CELIAC DISEASE SYMPTOMS
    Symptoms of celiac disease can range from the classic features, such as diarrhea, upset stomach, bloating, gas, weight loss, and malnutrition, among others.
    LESS OBVIOUS SYMPTOMS
    Celiac disease can often less obvious symptoms, such fatigue, vitamin and nutrient deficiencies, anemia, to name a few. Often, these symptoms are regarded as less obvious because they are not gastrointestinal in nature. You got that right, it is not uncommon for people with celiac disease to have few or no gastrointestinal symptoms. That makes spotting and connecting these seemingly unrelated and unclear celiac symptoms so important.
    NO SYMPTOMS
    Currently, most people diagnosed with celiac disease do not show symptoms, but are diagnosed on the basis of referral for elevated risk factors. 

    CELIAC DISEASE VS. GLUTEN INTOLERANCE
    Gluten intolerance is a generic term for people who have some sort of sensitivity to gluten. These people may or may not have celiac disease. Researchers generally agree that there is a condition called non-celiac gluten sensitivity. That term has largely replaced the term gluten-intolerance. What’s the difference between celiac disease and non-celiac gluten-sensitivity? 
    CELIAC DISEASE VS. NON-CELIAC GLUTEN SENSITIVITY (NCGS)
    Gluten triggers symptoms and immune reactions in people with celiac disease. Gluten can also trigger symptoms in some people with NCGS, but the similarities largely end there.

    There are four main differences between celiac disease and non-celiac gluten sensitivity:
    No Hereditary Link in NCGS
    Researchers know for certain that genetic heredity plays a major role in celiac disease. If a first-degree relative has celiac disease, then you have a statistically higher risk of carrying genetic markers DQ2 and/or DQ8, and of developing celiac disease yourself. NCGS is not known to be hereditary. Some research has shown certain genetic associations, such as some NCGS patients, but there is no proof that NCGS is hereditary. No Connection with Celiac-related Disorders
    Unlike celiac disease, NCGS is so far not associated with malabsorption, nutritional deficiencies, or a higher risk of autoimmune disorders or intestinal malignancies. No Immunological or Serological Markers
    People with celiac disease nearly always test positive for antibodies to gluten proteins. Researchers have, as yet, identified no such antobodies or serologic markers for NCGS. That means that, unlike with celiac disease, there are no telltale screening tests that can point to NCGS. Absence of Celiac Disease or Wheat Allergy
    Doctors diagnose NCGS only by excluding both celiac disease, an IgE-mediated allergy to wheat, and by the noting ongoing adverse symptoms associated with gluten consumption. WHAT ABOUT IRRITABLE BOWEL SYNDROME (IBS) AND IRRITABLE BOWEL DISEASE (IBD)?
    IBS and IBD are usually diagnosed in part by ruling out celiac disease. Many patients with irritable bowel syndrome are sensitive to gluten. Many experience celiac disease-like symptoms in reaction to wheat. However, patients with IBS generally show no gut damage, and do not test positive for antibodies to gliadin and other proteins as do people with celiac disease. Some IBS patients also suffer from NCGS.

    To add more confusion, many cases of IBS are, in fact, celiac disease in disguise.

    That said, people with IBS generally react to more than just wheat. People with NCGS generally react to wheat and not to other things, but that’s not always the case. Doctors generally try to rule out celiac disease before making a diagnosis of IBS or NCGS. 
    Crohn’s Disease and celiac disease share many common symptoms, though causes are different.  In Crohn’s disease, the immune system can cause disruption anywhere along the gastrointestinal tract, and a diagnosis of Crohn’s disease typically requires more diagnostic testing than does a celiac diagnosis.  
    Crohn’s treatment consists of changes to diet and possible surgery.  Up to 10% of Crohn's patients can have both of conditions, which suggests a genetic connection, and researchers continue to examine that connection.
    Is There a Connection Between Celiac Disease, Non-Celiac Gluten Sensitivity and Irritable Bowel Syndrome? Large Number of Irritable Bowel Syndrome Patients Sensitive To Gluten Some IBD Patients also Suffer from Non-Celiac Gluten Sensitivity Many Cases of IBS and Fibromyalgia Actually Celiac Disease in Disguise CELIAC DISEASE DIAGNOSIS
    Diagnosis of celiac disease can be difficult. 

    Perhaps because celiac disease presents clinically in such a variety of ways, proper diagnosis often takes years. A positive serological test for antibodies against tissue transglutaminase is considered a very strong diagnostic indicator, and a duodenal biopsy revealing villous atrophy is still considered by many to be the diagnostic gold standard. 
    But this idea is being questioned; some think the biopsy is unnecessary in the face of clear serological tests and obvious symptoms. Also, researchers are developing accurate and reliable ways to test for celiac disease even when patients are already avoiding wheat. In the past, patients needed to be consuming wheat to get an accurate test result. 
    Celiac disease can have numerous vague, or confusing symptoms that can make diagnosis difficult.  Celiac disease is commonly misdiagnosed by doctors. Read a Personal Story About Celiac Disease Diagnosis from the Founder of Celiac.com Currently, testing and biopsy still form the cornerstone of celiac diagnosis.
    TESTING
    There are several serologic (blood) tests available that screen for celiac disease antibodies, but the most commonly used is called a tTG-IgA test. If blood test results suggest celiac disease, your physician will recommend a biopsy of your small intestine to confirm the diagnosis.
    Testing is fairly simple and involves screening the patients blood for antigliadin (AGA) and endomysium antibodies (EmA), and/or doing a biopsy on the areas of the intestines mentioned above, which is still the standard for a formal diagnosis. Also, it is now possible to test people for celiac disease without making them concume wheat products.

    BIOPSY
    Until recently, biopsy confirmation of a positive gluten antibody test was the gold standard for celiac diagnosis. It still is, but things are changing fairly quickly. Children can now be accurately diagnosed for celiac disease without biopsy. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide.

    WHY A GLUTEN-FREE DIET?
    Currently the only effective, medically approved treatment for celiac disease is a strict gluten-free diet. Following a gluten-free diet relieves symptoms, promotes gut healing, and prevents nearly all celiac-related complications. 
    A gluten-free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. This is a difficult task as there are many hidden sources of gluten found in the ingredients of many processed foods. Still, with effort, most people with celiac disease manage to make the transition. The vast majority of celiac disease patients who follow a gluten-free diet see symptom relief and experience gut healing within two years.
    For these reasons, a gluten-free diet remains the only effective, medically proven treatment for celiac disease.
    WHAT ABOUT ENZYMES, VACCINES, ETC.?
    There is currently no enzyme or vaccine that can replace a gluten-free diet for people with celiac disease.
    There are enzyme supplements currently available, such as AN-PEP, Latiglutetenase, GluteGuard, and KumaMax, which may help to mitigate accidental gluten ingestion by celiacs. KumaMax, has been shown to survive the stomach, and to break down gluten in the small intestine. Latiglutenase, formerly known as ALV003, is an enzyme therapy designed to be taken with meals. GluteGuard has been shown to significantly protect celiac patients from the serious symptoms they would normally experience after gluten ingestion. There are other enzymes, including those based on papaya enzymes.

    Additionally, there are many celiac disease drugs, enzymes, and therapies in various stages of development by pharmaceutical companies, including at least one vaccine that has received financial backing. At some point in the not too distant future there will likely be new treatments available for those who seek an alternative to a lifelong gluten-free diet. 

    For now though, there are no products on the market that can take the place of a gluten-free diet. Any enzyme or other treatment for celiac disease is intended to be used in conjunction with a gluten-free diet, not as a replacement.

    ASSOCIATED DISEASES
    The most common disorders associated with celiac disease are thyroid disease and Type 1 Diabetes, however, celiac disease is associated with many other conditions, including but not limited to the following autoimmune conditions:
    Type 1 Diabetes Mellitus: 2.4-16.4% Multiple Sclerosis (MS): 11% Hashimoto’s thyroiditis: 4-6% Autoimmune hepatitis: 6-15% Addison disease: 6% Arthritis: 1.5-7.5% Sjögren’s syndrome: 2-15% Idiopathic dilated cardiomyopathy: 5.7% IgA Nephropathy (Berger’s Disease): 3.6% Other celiac co-morditities include:
    Crohn’s Disease; Inflammatory Bowel Disease Chronic Pancreatitis Down Syndrome Irritable Bowel Syndrome (IBS) Lupus Multiple Sclerosis Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Psoriasis Rheumatoid Arthritis Scleroderma Turner Syndrome Ulcerative Colitis; Inflammatory Bowel Disease Williams Syndrome Cancers:
    Non-Hodgkin lymphoma (intestinal and extra-intestinal, T- and B-cell types) Small intestinal adenocarcinoma Esophageal carcinoma Papillary thyroid cancer Melanoma CELIAC DISEASE REFERENCES:
    Celiac Disease Center, Columbia University
    Gluten Intolerance Group
    National Institutes of Health
    U.S. National Library of Medicine
    Mayo Clinic
    University of Chicago Celiac Disease Center

    Jefferson Adams
    Celiac.com 04/17/2018 - Could the holy grail of gluten-free food lie in special strains of wheat that lack “bad glutens” that trigger the celiac disease, but include the “good glutens” that make bread and other products chewy, spongey and delicious? Such products would include all of the good things about wheat, but none of the bad things that might trigger celiac disease.
    A team of researchers in Spain is creating strains of wheat that lack the “bad glutens” that trigger the autoimmune disorder celiac disease. The team, based at the Institute for Sustainable Agriculture in Cordoba, Spain, is making use of the new and highly effective CRISPR gene editing to eliminate the majority of the gliadins in wheat.
    Gliadins are the gluten proteins that trigger the majority of symptoms for people with celiac disease.
    As part of their efforts, the team has conducted a small study on 20 people with “gluten sensitivity.” That study showed that test subjects can tolerate bread made with this special wheat, says team member Francisco Barro. However, the team has yet to publish the results.
    Clearly, more comprehensive testing would be needed to determine if such a product is safely tolerated by people with celiac disease. Still, with these efforts, along with efforts to develop vaccines, enzymes, and other treatments making steady progress, we are living in exciting times for people with celiac disease.
    It is entirely conceivable that in the not-so-distant future we will see safe, viable treatments for celiac disease that do not require a strict gluten-free diet.
    Read more at Digitaltrends.com , and at Newscientist.com

    Jefferson Adams
    Celiac.com 04/16/2018 - A team of researchers recently set out to investigate whether alterations in the developing intestinal microbiota and immune markers precede celiac disease onset in infants with family risk for the disease.
    The research team included Marta Olivares, Alan W. Walker, Amalia Capilla, Alfonso Benítez-Páez, Francesc Palau, Julian Parkhill, Gemma Castillejo, and Yolanda Sanz. They are variously affiliated with the Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardin, Paterna, Valencia, Spain; the Gut Health Group, The Rowett Institute, University of Aberdeen, Aberdeen, UK; the Genetics and Molecular Medicine Unit, Institute of Biomedicine of Valencia, National Research Council (IBV-CSIC), Valencia, Spain; the Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire UK; the Hospital Universitari de Sant Joan de Reus, IISPV, URV, Tarragona, Spain; the Center for regenerative medicine, Boston university school of medicine, Boston, USA; and the Institut de Recerca Sant Joan de Déu and CIBERER, Hospital Sant Joan de Déu, Barcelona, Spain
    The team conducted a nested case-control study out as part of a larger prospective cohort study, which included healthy full-term newborns (> 200) with at least one first relative with biopsy-verified celiac disease. The present study includes 10 cases of celiac disease, along with 10 best-matched controls who did not develop the disease after 5-year follow-up.
    The team profiled fecal microbiota, as assessed by high-throughput 16S rRNA gene amplicon sequencing, along with immune parameters, at 4 and 6 months of age and related to celiac disease onset. The microbiota of infants who remained healthy showed an increase in bacterial diversity over time, especially by increases in microbiota from the Firmicutes families, those who with no increase in bacterial diversity developed celiac disease.
    Infants who subsequently developed celiac disease showed a significant reduction in sIgA levels over time, while those who remained healthy showed increases in TNF-α correlated to Bifidobacterium spp.
    Healthy children in the control group showed a greater relative abundance of Bifidobacterium longum, while children who developed celiac disease showed increased levels of Bifidobacterium breve and Enterococcus spp.
    The data from this study suggest that early changes in gut microbiota in infants with celiac disease risk could influence immune development, and thus increase risk levels for celiac disease. The team is calling for larger studies to confirm their hypothesis.
    Source:
    Microbiome. 2018; 6: 36. Published online 2018 Feb 20. doi: 10.1186/s40168-018-0415-6