• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,337
    Total Members
    3,093
    Most Online
    Lovisa
    Newest Member
    Lovisa
    Joined
  • 0

    Potential Celiac Patients Provide a Model of Celiac Disease Pathogenesis


    Jefferson Adams
    Image Caption: Photo: PLoS ONE

    Celiac.com 08/15/2011 - People with potential celiac disease have similar HLA, and positive anti-transglutaminase antibodies, but do not suffer damage to small intestinal mucosa. Very few of these patients develop mucosal lesions.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    So far, scientists know of more than forty genes associated with celiac disease, but exactly how these pathways act to trigger celiac disease in genetically predisposed individuals remains a mystery.

    A team of researchers recently set out to shed some light on that mystery. The research team included Maria Pia Sperandeo, Antonella Tosco, Valentina Izzo, Francesca Tucci, Riccardo Troncone, Renata Auricchio, Jihane Romanos, Gosia Trynka, Salvatore Auricchio, Bana Jabri, and Luigi Greco. They are variously affiliated with the European Laboratory for Food Induced Disease, and the Department of Pediatrics at the University of Naples Federico II in Naples, Italy, the Department of Genetics at the University Medical Centre at the University of Groningen, Groningen in The Netherlands, and with the Department of Medicine, the Department of Pathology and the Department of Pediatrics at University of Chicago.

    To more fully explore the genetic features of potential celiac disease individuals, the team enrolled 127 patients with potential celiac disease, positive anti-tissue transglutaminase and no mucosal lesions. Ultimately, about 30% of those followed for four years developed celiac disease.

    The team then genotyped each of the subjects for 13 polymorphisms of the 'candidate genes’ and compared the results to control subjects, and to patients with known celiac disease. They used 60 biopsy specimens to more fully evaluate gene expression.

    They found that people with potential celiac disease have less HLA-related risk compared to those with celiac disease (χ2 = 48.42; p value = 1×10−8). Those with potential celiac disease also share most of the polymorphisms of the celiacs, but the frequency of c-REL* G allele was suggestive for a difference compared to celiac (χ2 = 5.42; p value = 0.02).

    There was one marker of the KIAA1109/IL-2/IL-21 region that differentiated those with potential celiac disease from those with clinical celiac disease (rs4374642: χ2 = 7.17, p value = 0.01). In people with potential celiac disease, the expression of IL-21 was completely suppressed, whereas, in those with celiac disease (p value = 0.02) and in control subjects (p value = 0.02), IL-2, KIAA1109 and c-REL expression were over-expressed.

    The study reveals that people with potential celiac disease show different genetic features expression markers than those with celiac disease. The study also shows potential celiac disease to be a useful biological model of the pathways leading to the small intestinal mucosal damage in genetically predisposed individuals.

    Source:

    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   20 Members, 1 Anonymous, 1,091 Guests (See full list)

  • Related Articles

    Scott Adams
    Oberhuber G, Schwarzenhofer M, Vogelsang H
    Dig Dis 1999 Nov- Dec;16(6):341-4
    Department of Clinical Pathology, University of Vienna, Vienna, Austria. The in vitro challenge of duodenal mucosa with gliadin is a useful model to reproduce the immunological features of celiac disease (celiac disease) and allows the study of early pathogenetic events in this disease. With this model it was shown that antigens such as ICAM-1 and HLA-DR are upregulated as early as 1-2 h after gliadin challenge in patients with celiac disease. After 24 h the lamina propria contained CD4+ T cells expressing the IL-2 receptor alpha-chain, which is a sign of activation. Intraepithelial lymphocytes increased in number and showed proliferative activity. After in vitro stimulation with gliadin, endomysial antibodies were found in the supernatant of the cultured mucosa from patients with celiac disease following a gluten-free diet. This supported the notion that endomysial antibodies are at least in part produced locally. The model was also successfully used to identify toxic constituents of gliadin. Presently, organ culture is not commonly used for diagnostic purposes.

    Roy Jamron
    This article originally appeared in the Spring 2004 edition of Celiac.com's Scott-Free Newsletter.
    Celiac.com 05/10/2004 - Identical twins enter life from the same womb sharing the same genetic code, the same family, the same home, largely experiencing the same environment as they develop from infancy through childhood and mature into adults. When celiac disease strikes one identical twin, the odds are the other twin also has celiac disease. Twin studies lead to the conclusion that celiac disease is strongly linked to genetic factors. Yet one identical twin may develop celiac disease while the other twin may remain completely free of celiac disease for decades if not for a lifetime.
    One study looked at 20 pairs of identical twins and 27 pairs of fraternal twins where at least one twin of the pair was known to have celiac disease. In 75% of the pairs of identical twins, both twins had celiac disease. In contrast, in only 11% of the pairs of fraternal twins did both twins have celiac disease. However, in 25% of the 20 identical twin pairs studied, one twin of the pair did not have celiac disease1. In another study which followed 5 pairs of female identical twins for 11-23 years (at least one twin of the pair having celiac disease or dermatitis herpetiformis), it was found that two of the twins who began the study with neither celiac disease or dermatitis herpetiformis remained free of the disease throughout the study2. In other words, something beyond genetics, some environmental factor, seems to be responsible for the onset of celiac disease. Exactly what is it that makes one twin intolerant to gluten and not the other?
    Looking for Answers
    To find an answer, one might start by asking when do signs of an intolerance to gluten first begin to emerge? A recent study in the UK looked at a screened sample of 5,470 children aged 7 years old and found 54 who tested positive for both tTG antibodies and IgA-EMA (tissue transglutaminase and antiendomysial antibodies) indicating celiac disease is likely present. This 1% prevalence in children is comparable to the 1% prevalence of celiac disease in adults in the UK. Since the prevalence of celiac disease is not greater in adults, this suggests that the onset of celiac disease begins in early childhood, even in cases where celiac disease is not diagnosed until later in adulthood. The authors of this study concluded, “The search for the trigger resulting in the breakdown of immune tolerance to gluten therefore needs to focus on infancy and intrauterine life3.”
    Breast-Feeding
    Breast-feeding has long been thought to delay or reduce the risk of developing celiac disease in children. This effect has been attributed to a number of potentially protective milk components and antibodies passed from the mother. Studies relying on questionnaires have found that the onset of celiac disease in children is significantly delayed if gluten is introduced into the diet while the child is still being breast-fed4-7. The effect of epidermal growth factor (EGF), a component of breast milk, was studied in newborn rats. Interferon-gamma and gliadin, a gluten protein, were administered to rat pups to induce gluten enteropathy. Celiac disease-like villus atrophy was found in rat pups fed an artificial milk diet without EGF but not in breast-fed pups or pups supplemented with EGF8. Recent research shows that breast milk also passes bacterial flora from mother to newborn9. Growth factors found in human milk have been shown to aid in establishing predominant species of commensal bacteria in the gut of breast-fed infants10. The makeup of microflora which colonize the gut in early infancy is dependant on many factors, including whether babies are bottle-fed or exclusively breast-fed, whether or not delivered by caesarean section, on treatment in neonatal intensive care units, hygienic conditions, and antimicrobial procedures. Initially, it is the maternal microflora that is the source of bacteria for the newborn gut. A diet of breast milk induces the development of a flora rich in Bifidobacterium in full-term infants11. The possibility that these microflora play critical symbiotic roles in the development of the intestine and its immunological functions has not yet been considered as a factor in the onset of celiac disease.
    The Beneficial Roles of Gut Bacteria
    Over 500 species of bacteria may be present in the human gut in concentrations of between 100 billion to 1 trillion microbes per gram adding up to about 95% of the total number of cells in the human body12,13. For many years it has been known that gut bacteria play an important and beneficial role in one’s health. Extraordinary new findings on how commensal microflora participate in early gut development and in the development of the immune system have been uncovered by recent research. Here is sampling of some of these discoveries:
    A study of 64 healthy formula and breast-fed infants, aged 0-6 months, examined fecal samples for intestinal colonization of Bacteriodes fragilis, Bifidobacterium-like, and Lactobacillus-like bacteria, and compared these results with counts of IgA, IgM, and IgG antibody-secreting cells in blood fluids drawn from the infants. The result was that infants colonized with B. fragilis at one month of age had significantly higher counts of IgA- and IgM-secreting cells at the age of two months than infants not colonized with B. fragilis. It was concluded that colonization timing and the type of bacteria colonizing the gut of newborns may influence the maturation of the naive immune system14.
    Bacteriodes thetaiotaomicron, a species abundant in the guts of humans and mice, has been the focus of much research, chosen because of its predominance in the microflora and ability to be genetically manipulated. Studies of this microbe introduced into the developing guts of gnotobiotic (germ-free) laboratory mice have found B. thetaiotaomicron seems to communicate with host cells in the intestine, altering and influencing gut development and function.
    One study has shown gene activity in the host is affected by B. thetaiotaomicron colonization. Using sophisticated DNA microarray devices, a comparison of gene expression of some 25,000 mouse genes was made between germ-free and B. thetaiotaomicron colonized mice. The activity of 118 genes was found to be increased or reduced by colonization. These genes are involved in several important intestinal functions, including nutrient absorption, intestinal permeability, toxin neutralization, intestinal blood vessel development, and postnatal gut maturation suggesting that these functions should be examined further in future studies15.
    An influence on fructose production in the gut by B. thetaiotaomicron was the first finding uncovered by researchers. Pre-weaned mice produce fructose sugar on the surface of cells lining the intestine providing a food source helping to establish commensal bacteria. B. thetaiotaomicron colonizing the gut of germ-free mice causes intestinal cells to continue fructose production after weaning. If B. thetaiotaomicron is not present after weaning, fructose synthesis stops. B. thetaiotaomicron actually senses when its supply of fructose is low and instructs the host to produce more fructose in response16.
    Gene activity findings led researchers to look at the development of the intricate network of intestinal blood vessels in mice raised germ-free and in mice raised colonized with B. thetaiotaomicron or normal gut flora. When the mice reached adulthood, capillary development in the intestines was examined. Capillary development in mice colonized with B. thetaiotaomicron or normal flora was normal and complex, but capillary development in the germ-free mice was immature and arrested. Further, it was, found for blood vessel development to occur, these microbes must interact with Paneth cells (epithelial cells located at the base of the “crypts” in the small intestine)17.
    The relationship of B. thetaiotaomicron with Paneth cells was further studied. It was discovered that Paneth cells produce a protein called angiogenin 4 or Ang4 and that Paneth cells are induced to express Ang4 by B. thetaiotaomicron. Ang4 and other angiogenins were found to exhibit bactericidal and fungicidal activities against certain known pathogens. It appears that B. thetaiotaomicron and other commensal microbes, which are themselves resistant to Ang4, take part in shaping the microbial ecology of the gut and innate immunity18.
    Another study found a relationship between commensal bacteria and the development of gut-associated lymphoid tissue (GALT) in rabbits. GALT consists of lymphocytes and organized tissues called Peyer’s patches and mesenteric lymph nodes (MLNs) located within the intestinal mucosa, which are involved in the induction of immunity and tolerance. During the first few months after birth, newborn animals and humans rely on antibodies passed maternally to fend off infections until the immune system can mature. After those first few months, a diversification of antibody repertoire normally takes place within the GALT. When, shortly after birth, the appendices of rabbits are tied-off and isolated to prevent colonization by microflora, GALT development within the appendices is arrested. Rabbit pups delivered sterilely, isolated and hand-reared on a sterile diet exhibited underdeveloped GALT and antibody repertoires. In further experimentation, a number of different bacteria species were introduced into surgically-rendered, germ-free appendices of rabbits. No bacteria species alone promoted GALT development. However, the combination of Bacteroides fragilis and Bacillus subtilis consistently resulted in the development of GALT and antibody repertoire. The conclusion is that specific combinations of microflora are required for GALT development19,20.
    In other research, the composition of commensal flora in rats was shown to alter intestinal permeability. Colonization with Escherichia coli, Klebsiella pneumoniae, and Streptococcus viridans significantly increased colonic wall permeability while colonization with the common probiotic strain, Lactobacillus brevis, significantly reduced permeability of the colon wall. Bacteroides fragilis induced only a slight permeability reduction21.
    Gut pathogens in combination with stimulation by cytokines such as TNF-alpha (tumor necrosis factor) can cause cells of the intestinal epithelium to respond by releasing proinflammatory cytokines like interleukin-8 (IL-8). A study found that probiotic strains, Bifidobacterium longum and Lactobacillus bulgaricus, can suppress IL-8 secretion in intestinal epithelia when stimulated by proinflammatory cytokines. Hence, some probiotic strains of bacteria may be able to down-regulate inflammation in the gut22.
    Other beneficial functions of microflora include the fermentation and removal of non-digestible dietary residue and the mucus residue produced by the epithelia; the derivation of energy as short-chain fatty acids by fermentation of carbohydrates in the colon; the production of vitamins, particularly those of the B group and vitamin K; the absorption of minerals and ions including calcium, magnesium and iron; and the formation of a protective functional barrier against pathogens23,24.
    A Role for Bacteria in Celiac Disease?
    As can been seen, commensal microflora play a myriad of complex, diverse and important roles in normal health and development. Much remains to be investigated, and new roles and functions microflora play are waiting to be discovered. The possibility that commensal bacteria are involved in the pathogenesis of celiac disease cannot be overlooked. Certainly, differences in the mix of microflora could account for why one identical twin may develop celiac disease while the other does not. Could the mix of commensal bacteria in newborn infants set the stage for the development of celiac disease? Could the onset of celiac disease be triggered by an event such as illness, use of antibiotics, stress, or pregnancy which alters the mix of microflora opening the door to a pathogenic interaction with gluten? One recent study has already found an association between antibiotic use and the development of Crohn’s disease25.
    Over the course of the last few years, much new understanding of the pathogenesis of celiac disease has come to light, but a fundamental question remains unanswered: Why does the immune system fail to tolerate gluten in some people? A possible mechanism involving one or more unidentified species of commensal bacteria possibly explaining why tolerance to gluten fails will be proposed and discussed here.
    Tolerance and Immunity
    The subject of tolerance and immunity is involved and complex, and science remains far from fully comprehending its workings. At heart, is how the immune system decides to react when an antigen is first presented to a naive T cell. The response of the immune system to an antigen is mediated and regulated by cell secretions of numerous proteins called “cytokines” sensed by a multitude of receptors on the various specialized cells of the immune system. Structural components of pathogens are also sensed by immune cell receptors called “Toll-like receptors”. Antigens may be any substance foreign to the body and may or may not actually be harmful. They could be components of food, or could be components of either friendly or pathogenic organisms.
    In celiac disease, the antigens are those gluten peptides which survive the process of digestion. In the current understanding of celiac disease, these peptides are transported across the mucosal epithelium as polypeptides. In mainly the subepithelial region, gluten peptides undergo a process called deamidation by an enzyme called tissue transglutaminase (tTG). A peptide is a chain of amino acids. Deamidation is a process that converts glutamine amino acid components of a gluten peptide into glutamic acid components. In the lamina propria region of the intestines, deamidated gluten peptides are taken up by antigen presenting cells called dendritic cells and presented by HLA-DQ2 or -DQ8 molecules on the surface of dendritic cells to receptors of gluten-sensitive naive CD4+ T cells (Note celiac disease here refers to a “cluster of differentiation” number, a numbering system for the cell-surface molecules which identify T cell type). Activated CD4+ T cells then differentiate and proliferate. Some T cells interact with B cells which, in turn, then differentiate into plasma cells producing antigliadin, antiendomysial and anti-tTG antibodies. Other T cells become natural killer or cytotoxic T cells, secreting cytokines which cause inflammation and damage to the enterocytes in the epithelium. Connective tissue cells called “fibroblasts” increase their output of matrix metalloproteinase enzymes which may play an active role in villus atrophy. Intraepithelial lymphocytes also increase, but their role is not clear26-29.
    Human leukocyte antigen (HLA) genes encode the class II molecules DQ2 and DQ8, the key genetic risk factors in celiac disease. The HLA system is the human version of the major histocompatibility complex (MHC). HLA class II molecules are expressed on the surface of antigen presenting cells such as dendritic cells. Virtually all celiac disease patients carry DQ2 or DQ8, but carrying DQ2 or DQ8 alone does not confer celiac disease. DQ2 and DQ8 molecules may be encoded by several different haplotypes. Haplotypes are combinations of alternative genes for the same trait (alleles) occupying different locations on a chromosome which tend to be inherited as a group. These DQ2 and DQ8 molecules play a central role in the pathogenesis of celiac disease. The function of HLA class II molecules is to bind peptide antigens and present them to CD4+ T-cell receptors. The pattern of amino acids in the makeup of the chain that forms the peptide antigen is called an epitope, and that pattern is crucial to the binding between HLA molecule and peptide. It is the misfortune of celiac disease patients that epitopes of deamidated gluten peptides just happen to match up and firmly anchor into the binding grooves of DQ2 and DQ8 molecules. This strong binding results in the activation of CD4+ T cells and the subsequent processes which damage the intestinal epithelia. But why is it that CD4+ T cells are not activated in everyone who possesses the appropriate HLA-DQ2 and -DQ8 haplotypes? The question arises again. Why is one identical twin tolerant to gluten and not the other?26-30
    Dendritic Cells
    Whether an outcome of tolerance or intolerance results when a dendritic cell presents an antigen to a naive T cell depends on many factors. A dendritic cell is a special type of white blood cell (leukocyte) which circulates throughout the body looking to acquire antigens. Dendritic cells engulf and internalize antigens through a process called endocytosis. In receptor-mediated endocytosis, dendritic cells express a variety of surface receptors to capture protein antigens. In macropinocytosis, dendritic cells surround and “drink up” soluble antigens. In phagocytosis, dendritic cells engulf pathogenic bacteria, viruses, fungi, dead or infected cells, or their products. After digestion and processing, the antigens are bound to HLA (or MHC) molecules and expressed on the surface of dendritic cells for presentation to T cells. Antigen presentation occurs after dendritic cells migrate to the lymph nodes which are rich with T cells. T cell activation also requires secondary stimulation by costimulatory molecules expressed on the dendritic cell surface. Dendritic cells have three stages in their life cycle: Precursor, immature and mature. Precursor dendritic cells arise from the bone marrow. Subsets of precursor dendritic cells have been identified that grow and differ with regard to observable characteristics (phenotype), function and anatomical location. Studies have linked dendritic cell subsets with particular functions such as T cell differentiation or tolerance induction. Immature dendritic cells spread throughout tissues seeking antigens. Dendritic cells enter the mature stage when they reach the lymph nodes after antigen capture and having become primed and ready to activate T cells with antigens and costimulatory molecules. The processing of antigens produces roughly 100,000 to 300,000 peptide-laden HLA molecules on the dendritic cell surface, most peptides represented by about 100 copies. A single mature dendritic cell is capable of stimulating 100–3,000 T cells31-34.
    Immature dendritic cells are capable of phagocytosis of bacteria. Dendritic cell phagocytosis of Salmonella and Borrelia burgdorferi has been observed and studied. Immature dendritic cells roaming the lamina propria below the epithelial cells of the intestine not only capture bacteria which invade and cross the epithelial barrier, but have been observed reaching through the tight junctions between epithelial cells with their dendrite arms to directly sample non-invasive bacteria in the gut lumen and mucosa tissues outside the epithelium34-37.
    Immature dendritic cells express a variety of surface receptors which when stimulated cause dendritic cells to mature and respond in specific ways which can result in tolerance or immune activity. These receptors include Toll-like receptors (TLR), cytokine receptors, TNF (tumor necrosis factor) receptor, immunoglobulin (antibody) receptors, and sensors for cell death. TNF and other cykotine inflammatory mediators signal infections. In particular, interleukin-1 (IL-1) can prevent oral tolerance in mice by altering the response of normally tolerogenic dendritic cells into an active immune response32,34.
    Toll-like receptors are known as pattern recognition receptors which identify structural components found only on the surface of bacteria and other pathogens. These components are referred to as pathogen-associated molecular patterns (PAMPs). At least 10 types of TLR have been identified in humans and given the designations, TLR1-TLR10. Examples of PAMP include microbial carbohydrates like the toxin lipopolysaccharides (LPS), flagellin, products from bacterial cell walls, bacterial RNA and DNA. Signaling through different TLR evokes distinct biological responses. TLR expressed differently by different dendritic cell subsets may determine the manner in which dendritic cell subsets respond to particular microbial structures34,39.
    Mature dendritic cells can produce cytokines while activating CD4+ T cells which may influence T cell differentiation and function. Activated T cells divide and proliferate and differentiate into a variety of types. Tolerance and immunity induction are influenced most by differentiation into type 1 and type 2 helper T cells (Th1 and Th2) and regulatory T cells. The type of cytokines produced by the T cells determine their classification. Th2 responses favor tolerance. Th1 responses favor immunity and inflammation. Regulatory T cells suppress immune responses. IL-10 produced by dendritic cells appears to contribute to Th2 and regulatory T cell responses. Dendritic cell production of IL-12, IL-18, and IL-23 contribute to a Th1 response34,40.
    Why Does Tolerance to Gluten Fail?
    Okay. So why does the immune system fail to tolerate gluten in celiac disease? The immune system receives and responds to all kinds of signals from a pathogen, but how can a simple gluten peptide turn this complex immune machinery into a force against itself? Thinking about this leads to a very provocative question:
    What if instead of responding to gluten peptides alone, the immune system responds to a pathogenic gut bacteria which routinely ingests gluten peptides?
    A 33 amino acid gluten peptide has been identified as the primary initiator of the inflammatory response in celiac disease. This peptide contains a number of amino acid sequences which correspond to epitopes known to activate T cells and initiate celiac disease response. In particular, this 33-mer peptide was identified because it remained intact in the residue of a solution of gliadin mixed with gastric and pancreatic enzymes. This demonstrates some gluten peptides are difficult to breakdown by normal digestive processes. Another experiment identified a 17 amino acid gluten peptide which also contained epitopes associated with celiac disease41,42.
    Bacteria do not ingest nutrients in the normal sense. Nutrients are transported across cell membranes via several different mechanisms. Transported nutrients are necessarily limited in size. Nutrients are broken down externally by enzymes and by processes such as fermentation, an oxidation process resulting from acids produced by bacteria. Growth factors consisting of purines, pyrimidines, vitamins and amino acids are required by some bacteria in order to grow. Other bacteria are able to synthesize these essential growth factors. Researchers have found that some bacteria can transport and internalize amino acids in the form of peptides. Studies so far have found peptides up to 18 amino acids in length can be internalized by bacteria43-46.
    Epitopes of gluten peptides deamidated by tissue transglutaminase (tTG) are believed central to celiac disease pathogenesis. However, a study of gluten response in children with celiac disease found that T cells can respond to native gluten peptides independent of deamidation47. Celiac disease may begin its course without deamidation. As the disease progresses, inflammation may cause an increase in expression of tTG. An increase in tTG expression has been shown during wound healing, in liver injury, and in response to an inflammatory stimulus by lipopolysaccharide48-50. Through a process called epitope spreading and with the increase in tTG expression, deamidation of gluten peptides is more likely to occur and T cell response to deamidated gluten peptides likely develops. tTG is expressed in the epithelial brush border and extracellularly in the subepithelial region26 (The brush border is composed of the microvilli found on each individual epithelial cell).
    In the course of evolution of bacteria in the gut, it would seem highly plausible that at least one or more bacteria species have evolved and adapted in some way to transport, internalize and utilize gluten peptides as a source of amino acids. Since tTG is expressed in the epithelial brush border, deamidated gluten peptides are available to such bacteria (though in the early stage of celiac disease deamidation may not be required). If these bacteria colonize the gut and exhibit some pathogenic characteristic, such as expressing lipopolysaccharide, dendritic cells may be signaled to reach through the epithelial barrier into the lumen to sample and phagocytize the bacteria. When this bacteria is digested and processed by the dendritic cells, the antigens bound to HLA molecules and expressed on the dendritic cell surface are likely to include the difficult to breakdown, intact gluten peptides that have been internalized by the bacteria. As far as the immune system is concerned, these gluten peptides are indistinguishable from the other bacterial peptides bound to HLA molecules expressed on the dendritic cell surface. When these gluten peptide antigens are bound to HLA-DQ2 or -DQ8 molecules and presented to CD4+ T cells, the T cells simultaneously receive all the signals telling them that the gluten peptide is an antigen from a pathogenic bacteria. The result is that the immune system responds to the presence of gluten as though pathogenic bacteria were present. Such gluten-ingesting bacteria may be the missing link in the pathogenesis of Celiac Disease.
    If these bacteria exist, there is now a clear explanation as to why one identical twin may develop celiac disease and not the other. Of course, the presence of such a bacteria in the gut of one twin and not the other would fully explain the discordance. It is also possible that such a bacteria may exist in both twins, but is kept under control by the mix of commensal bacteria colonizing the gut of one twin. Some disturbance to this mix, such as an infection or use of antibiotics, might provide an opportunity for this gluten-ingesting bacteria to colonize and proliferate to a level where its pathogenic properties, such as production of endotoxins, are sensed by the immune system initiating the onset of celiac disease. The existence of such bacteria could also explain why there may be varying degrees of gluten sensitivity, even in individuals without DQ2 and DQ8 molecules.
    The possibility that these gluten-ingesting bacteria may exist raises another intriguing question: If these gluten-ingesting bacteria are controlled or eliminated from the gut, could tolerance to gluten be restored? There could be a very real possibility that celiac disease might be cured by eliminating these bacteria. After all, peptic ulcers can be cured by eliminating Helicobacter pylori.
    The Future
    So where should research go from here? The most obvious path would be first to try to find and identify any gut bacteria that has gluten peptides present within its cell membranes. From there, the possible link to celiac disease could be studied. Additionally, it would be quite valuable to initiate a large long-term study of the makeup of commensal bacteria in identical twins beginning at birth via fecal samples. By comparing the differences in microflora and the onset and discordance of diseases in identical twins over many years, the relationships of specific species of bacteria to specific diseases, including celiac disease, could be established. And if it proves to be true that gluten-ingesting bacteria cause celiac disease, a similar mechanism involving bacteria and peptides from other proteins may be the root cause for many other autoimmune diseases. A whole class of autoimmune diseases might be cured by eliminating specific species of bacteria.
    Roy Jamron holds degrees in physics and engineering from the University of Michigan and the University of California at Davis and actively pursues and investigates research on celiac disease and related disorders.

    References:
    Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, Paparo F, Gasperi V, Limongelli MG, Cotichini R, D'Agate C, Tinto N, Sacchetti L, Tosi R, Stazi MA. The first large population based twin study of coeliac disease. Gut 2002 May;50(5):624-8. Bardella MT, Fredella C, Prampolini L, Marino R, Conte D, Giunta AM. Gluten sensitivity in monozygous twins: a long-term follow-up of five pairs. Am J Gastroenterol 2000 Jun;95(6):1503-5. Bingley PJ, Williams AJ, Norcross AJ, Unsworth DJ, Lock RJ, Ness AR, Jones RW. Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. BMJ 2004 Feb 7;328(735):322-3. Sollid LM. Breast milk against coeliac disease. Gut 2002 Dec;51(6):767-8. Nash S. Does exclusive breast-feeding reduce the risk of coeliac disease in children? Br J Community Nurs 2003 Mar;8(3):127-32. Ivarsson A, Hernell O, Stenlund H, Persson LA. Breast-feeding protects against celiac disease. Am J Clin Nutr 2002 May;75(5):914-21. Peters U, Schneeweiss S, Trautwein EA, Erbersdobler HF. A case-control study of the effect of infant feeding on celiac disease. Ann Nutr Metab 2001;45(4):135-42. Stepankova R, Kofronova O, Tuckova L, Kozakova H, Cebra JJ, Tlaskalova-Hogenova H. Experimentally induced gluten enteropathy and protective effect of epidermal growth factor in artificially fed neonatal rats. J Pediatr Gastroenterol Nutr 2003 Jan;36(1):96-104. Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, Fernandez L, Rodriguez JM. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003 Dec;143(6):754-8. Goldman AS. Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J Nutr 2000 Feb;130(2S Suppl):426S-431S. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 2003 Sep;91(441):48-55. Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O'Sullivan GC, Shanahan F, Collins JK. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 2001 Feb;73(2 Suppl):386S-392S. Mai V, Morris JG Jr. Colonic bacterial flora: changing understandings in the molecular age. J Nutr 2004 Feb;134(2):459-64 Gronlund MM, Arvilommi H, Kero P, Lehtonen OP, Isolauri E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months. Arch Dis Child Fetal Neonatal Ed 2000 Nov;83(3):F186-92. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001 Feb 2;291(5505):881-4. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 1999 Aug 17;96(17):9833-8. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 2002 Nov 26;99(24):15451-5. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003 Mar;4(3):269-73. Lanning D, Sethupathi P, Rhee KJ, Zhai SK, Knight KL. Intestinal microflora and diversification of the rabbit antibody repertoire. J Immunol 2000 Aug 15;165(4):2012-9. Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 2004 Jan 15;172(2):1118-24. Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR. Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 2001 Apr;48(4):503-7. Bai AP, Ouyang Q, Zhang W, Wang CH, Li SF. Probiotics inhibit TNF-alpha-induced interleukin-8 secretion of HT29 cells. World J Gastroenterol 2004 Feb 1;10(3):455-7. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003 Feb 8;361(9356):512-9. Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997 Mar;6 Suppl 1:S43-5. Card T, Logan RF, Rodrigues LC, Wheeler JG. Antibiotic use and the development of Crohn's disease. Gut 2004 Feb;53(2):246-50. Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2002 Sep;2(9):647-55. Dewar D, Pereira SP, Ciclitira PJ. The pathogenesis of coeliac disease. Int J Biochem Cell Biol 2004 Jan;36(1):17-24. Farrell RJ, Kelly CP. Celiac sprue. N Engl J Med 2002 Jan 17;346(3):180-8. Daum S, Bauer U, Foss HD, Schuppan D, Stein H, Riecken EO, Ullrich R. Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease. Gut 1999 Jan;44(1):17-25. Louka AS, Sollid LM. HLA in coeliac disease: unravelling the complex genetics of a complex disorder. Tissue Antigens 2003 Feb;61(2):105-17. DeMeyer ES, Baar J. Dendritic Cells: The Sentry Cells of the Immune System. Oncology Education Services, Inc. http://oes.digiton.com/dcell/ Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-67. Klein J, Sato A. The HLA system. First of two parts. N Engl J Med 2000 Sep 7;343(10):702-9. Stagg AJ, Hart AL, Knight SC, Kamm MA. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut 2003 Oct;52(10):1522-9. Sundquist M, Rydstrom A, Wick MJ. Immunity to Salmonella from a dendritic point of view. Cell Microbiol 2004 Jan;6(1):1-11. Suhonen J, Komi J, Soukka J, Lassila O, Viljanen MK. Interaction between Borrelia burgdorferi and immature human dendritic cells. Scand J Immunol 2003 Jul;58(1):67-75. Uhlig HH, Powrie F. Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses. J Clin Invest 2003 Sep;112(5):648-51. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001 Apr;2(4):361-7. Singh BP, Chauhan RS, Singhal LK. Toll-like receptors and their role in innate immunity. Current Science 2003 Oct;85(8):1156-1164. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003 Apr;3(4):331-41. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C. Structural basis for gluten intolerance in celiac sprue. Science 2002 Sep 27;297(5590):2275-9. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 2000 Mar;6(3):337-42. Todar K. Todar's Online Textbook of Bacteriology. Univ of Wisconsin Department of Bacteriology. http://www.textbookofbacteriology.net Monnet V. Bacterial oligopeptide-binding proteins. Cell Mol Life Sci 2003 Oct;60(10):2100-14. Foucaud C, Hemme D, Desmazeaud M. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Lett Appl Microbiol 2001 Jan;32(1):20-5. Detmers FJ, Kunji ER, Lanfermeijer FC, Poolman B, Konings WN. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 1998 Nov 24;37(47):16671-9. Vader W, Kooy Y, Van Veelen P, De Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW, Koning F. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002 Jun;122(7):1729-37. Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS. Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 1999 Oct;13(13):1787-95. Nardacci R, Lo Iacono O, Ciccosanti F, Falasca L, Addesso M, Amendola A, Antonucci G, Craxi A, Fimia GM, Iadevaia V, Melino G, Ruco L, Tocci G, Ippolito G, Piacentini M. Transglutaminase type II plays a protective role in hepatic injury. Am J Pathol 2003 Apr;162(4):1293-303. Bowness JM, Tarr AH. Increase in transglutaminase and its extracellular products in response to an inflammatory stimulus by lipopolysaccharide. Mol Cell Biochem 1997 Apr;169(1-2):157-63.

    Scott Adams
    Celiac.com 12/30/2004 - A new study on celiac disease was presented at the 69th Annual Scientific Meeting of the American College of Gastroenterology by S. Devi Rampertab, MD, from the North Shore Long Island Jewish Health System in New York. The study looked retroactively at 590 patients with a celiac diagnosis confirmed by biopsy from 1952 to 2004. They found that since 1980 the patient age of diagnosis has increased from 30.5 to 42, and the number of cases diagnosed after significant diarrhea decreased from 91% to 37%—and the time period from the development of the disease to its detection decreased from 11 years (before 1980) to four years now. New blood screening techniques are credited for the earlier detection of the disease, and the resulting decrease in the percentage of patients diagnosed after the development of a malignancy—which decreased from nearly 22% before 1980 to just over 5% now. The positive trends noted in this study further support the use of widespread serum screening to detect celiac disease, as it can prevent many of the complications caused by the disease. One thing that isnt clear, however, is why the age of diagnosis is getting higher—even though Italian studies have determined through mass-screenings that celiac disease is present in at least 1% of all children. Since that number is consistent with the number of people in the USA with the disease, it stands to reason that celiac disease may in fact be a childhood disease, and if so, the 42 year-old average age of diagnosis in the USA would indicate a massive failure of our health care system to detect the disease. More studies need to be done to determine the number of children in the USA with celiac disease.
    Since most celiacs have little or no symptoms—Celiac.com believes that the only reasonable way to get them properly diagnosed and treated would be to have widespread serological screenings of the general population. The disease affects at least 1% of the population in the USA, and the benefits for such screenings would far outweigh their cost.


    Jefferson Adams
    Celiac.com 09/03/2010 - Many patients who show up at hospitals and clinics with non-specific gastrointestinal symptoms have rotavirus infection
    A team of researchers recently studied a large cohort of adults with non-specific gastrointestinal complaints to see if people with celiac disease had any higher for rotavirus.
    The research team included Mohammad Rostami-Nejad, BS, Kamran Rostami, MD,PhD, Maryam Sanaei, MSc, Seyed R. Mohebbi, PhD, David Al-Dulaimi, MD, Ehsan Nazemalhosseini-Mojarad, MSc, Pekka Collin, MD, Chris J. Mulder, MD, PhD, Mohammad R. Zali, MD, FACG.
    They are associated variously with the Research Center of Gastroenterology and Liver Diseases at Shaheed Beheshti University in Tehran, Iran; the School of Medicine of the University of Birmingham, UK, the Department of Gastroenterology at Alexander Hospital in Redditch, UK; the Department of Gastroenterology and Alimentary Tract Surgery at Tampere University Hospital in Finland, and with the Department of Gastroenterology at VU University Medical Center in Amsterdam, The Netherlands.
    The team conducted the study at the Research Center of Gastroentrology and Liver Disease at Taleghani Hospital in Tehran, Iran.
    For their study, they randomly selected 5176 individuals living in Tehran, Iran between September 2006 and September 2007. Using a questionnaire, they found 670 case of GI symptoms, each of whom was invited for additional study, including stool sampling and blood tests.
    The researchers screened stool samples for rotavirus using amplification of specific gene (VP6), light microscopy and formalin-ether concentration methods. They also tested subjects for celiac disease including anti-transglutaminase (tTG) antibodies and total immunoglobulin A (IgA).
    The research team found the VP6 gene in 150 (22.3%) individuals. 22 subjects showed positive results for anti-tissue transglutaminase (tTG-IgA) (95% CI 2.3-5.1), while three patients who were IgA deficient tested positive for the IgGtTG antibody.
    Eight of 25 patients (32%) showed amplification of VP6 gene, and positive blood screens for celiac disease, while 142 of 645 with negative celiac blood tests (22%) showed amplification of VP6 gene. They found no statistically important difference between the two groups (p=0.2).
    Unlike earlier studies in children, this adult study shows that rates of active rotavirus infection were about the same for adults who tested positive for tTG antibody as they were for adults who tested negative for tTG antibody. Based on this study, there is no higher rotavirus risk for adults with celiac disease.
    Source:

    Saudi Med J 2010; Vol. 31 (8):891-4.

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023

    Jefferson Adams
    Celiac.com 06/13/2018 - There have been numerous reports that olmesartan, aka Benicar, seems to trigger sprue‐like enteropathy in many patients, but so far, studies have produced mixed results, and there really hasn’t been a rigorous study of the issue. A team of researchers recently set out to assess whether olmesartan is associated with a higher rate of enteropathy compared with other angiotensin II receptor blockers (ARBs).
    The research team included Y.‐H. Dong; Y. Jin; TN Tsacogianis; M He; PH Hsieh; and JJ Gagne. They are variously affiliated with the Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School in Boston, MA, USA; the Faculty of Pharmacy, School of Pharmaceutical Science at National Yang‐Ming University in Taipei, Taiwan; and the Department of Hepato‐Gastroenterology, Chi Mei Medical Center in Tainan, Taiwan.
    To get solid data on the issue, the team conducted a cohort study among ARB initiators in 5 US claims databases covering numerous health insurers. They used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for enteropathy‐related outcomes, including celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy. In all, they found nearly two million eligible patients. 
    They then assessed those patients and compared the results for olmesartan initiators to initiators of other ARBs after propensity score (PS) matching. They found unadjusted incidence rates of 0.82, 1.41, 1.66 and 29.20 per 1,000 person‐years for celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy respectively. 
    After PS matching comparing olmesartan to other ARBs, hazard ratios were 1.21 (95% CI, 1.05‐1.40), 1.00 (95% CI, 0.88‐1.13), 1.22 (95% CI, 1.10‐1.36) and 1.04 (95% CI, 1.01‐1.07) for each outcome. Patients aged 65 years and older showed greater hazard ratios for celiac disease, as did patients receiving treatment for more than 1 year, and patients receiving higher cumulative olmesartan doses.
    This is the first comprehensive multi‐database study to document a higher rate of enteropathy in olmesartan initiators as compared to initiators of other ARBs, though absolute rates were low for both groups.
    Source:
    Alimentary Pharmacology & Therapeutics