• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,411
    Total Members
    3,093
    Most Online
    Liza Wolfe
    Newest Member
    Liza Wolfe
    Joined
  • 0

    Understanding Intestinal Bacteria in Infants at Risk of Developing Celiac Disease


    Gryphon Myers
    Image Caption: Photo: CC--Nathan Reading

    Celiac.com 05/30/2012 - From what we understand about celiac disease, both genetic and environmental factors play a part in its development: eople with certain genetic dispositions are more likely to develop it, but studies of twins at high risk of developing celiac disease have shown that in 25% of cases, only one of the twins will develop the disease. This indicates an environmental effect, and with more research it might be possible to discover what these environmental factors are so that parents with celiac disease can take steps to prevent their children from developing the disease themselves.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Photo: CC--Nathan ReadingBreast-feeding has already demonstrated some protective effect on infants at risk of developing celiac disease, but it is still unclear how the modulation of intestinal bacteria affects the formation of the disease. Understanding the role various strains of intestinal bacteria play in the intestine could be the key to understanding why breast-feeding helps prevent celiac disease, and perhaps why celiac disease develops at all.

    In the present study, 75 newborns with at least one first degree relative with celiac disease were broken into breast-feeding, formula-feeding groups, high (7-28%) and low (less than 1%) genetic risk groups, then tested at 7 days, 1 month and 4 months for prevalence and diversity of intestinal bacteria.

    Infants at high risk of developing celiac disease had more Bacteroides vulgatus, regardless of feeding methods while infants at low risk of developing celiac disease had more Bacteroides ovatus, Bacteroides plebeius and Bacteroides uniformis.

    Formula-fed infants had more Bacteroides intestinalis, Bacteroides caccae and Bacteroides plebeius, though prevalence depended on the testing stage.

    The most striking finding of the experiment seems to indicate that both low genetic risk of celiac disease development and breast-feeding are positively correlated with the prevalence of Bacteroides uniformis in the intestines. This might explain why breast-feeding can help protect against development of the disease, by introducing more Bacteroides uniformis into the infant's intestinal bacteria community.

    The implications of this research are still unclear, but a follow-up study on these infants is intended. Further research may explain how the prevalence of these bacteria in the intestine actually affects the development of celiac disease in infants.

    Source:

    0


    User Feedback

    Recommended Comments

    Guest Mish

    Posted

    This might help explain why my son didn't show any of the classic signs of celiac until he weaned (a few months after he turned 2). He always had GI issues, but none of the more extreme ones. Makes me wonder what will happen with my second born after he weans...

    Share this comment


    Link to comment
    Share on other sites
    Guest Sara

    Posted

    I wish that breast feeding did prevent celiac disease, however my daughter was breast-fed and developed celiac symptoms at 5 months. She is now 8 months and still breast fed, however I have had to cut out gluten to eliminate her symptoms. I'm afriad this will prevent parents who have breast-fed babies to not consider celiac disease as a possibility. It does happen when breastfeeding and she does not take formula.

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   16 Members, 0 Anonymous, 980 Guests (See full list)

  • Related Articles

    Scott Adams
    Nat Genet. 2005 Nov 13
    Celiac.com 11/29/2005 - The following is an abstract of a study by Dutch researchers which demonstrates a new level of understanding with regard to the role that specific genes play in the cause of celiac disease. These findings may eventually lead to a treatment that lies beyond the gluten-free diet:


    Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 x 10(-5)). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier.

    Jefferson Adams
    Celiac.com 03/19/2010 - Celiac disease is a chronic inflammatory disorder of the gut triggered by an adverse immune response to dietary gluten proteins in genetically susceptible individuals. One of the first ways the body responds to offending proteins in an adverse celiac disease response is by producing mucous via IgA secretion in an effort to neutralize offending antigens and pathogens.
    A team of researchers recently sought to better document the relationships between immunoglobulin-coated bacteria and bacterial composition in feces of celiac disease patients, untreated and treated with a gluten-free diet (GFD) and healthy controls. The research team included Giada De Palma, Inmaculada Nadal, Marcela Medina, Ester Donat, Carmen Ribes-Koninckx, Miguel Calabuig,  and Yolanda Sanz.
    They observed that intestinal dysbiosis and reduced immunoglobulin-coated bacteria are associated with celiac disease in children. Both untreated and treated celiac disease patients showed markedly lower levels of IgA, IgG and IgM-coated fecal bacteria compared to healthy controls.
    Celiac disease patients showed substantially reduced ratio of Gram-positive to Gram-negative bacteria compared to control subjects. Untreated celiac disease patients showed less abundant group proportions (P<0.050) of Bifidobacterium, Clostridium histolyticum, C. lituseburense and Faecalibacterium prausnitzii than did healthy controls.
    Untreated celiac disease patients showed more abundant group proportions (P<0.050) of Bacteroides-Prevotella than in control subjects. Both untreated and treated celiac disease patients showed significantly impoverished (P<0.050) levels of IgA coating the Bacteroides-Prevotella compared with healthy controls.

    From these results, the research team concluded that intestinal dysbiosis plays a role in reduced IgA-coating bacteria in celiac disease patients. This offers a fresh perspective into the possible relationships between the gut microbiota and the host defenses in celiac disease patients.
    Source:

    BMC Microbiology 2010, 24 February

    Gryphon Myers
    Celiac.com 05/23/2012 - We know from past studies that the intestinal bacteria communities of children with celiac disease differ greatly from those of healthy children, but there has been little work done to draw such a correlation with adult celiac disease sufferers. Intestinal bacteria could potentially serve as a convenient way of indexing the severity of a patient's celiac disease, but research in adults is limited. A recent study remedies this, showing that adults with celiac disease do, in fact, have different intestinal bacteria from healthy adults, which may lead to a way of testing for the severity of one's disorder based on fecal bacteria tests. 
    Ten untreated celiac disease patients, eleven treated celiac disease patients (those on gluten-free diets for at least two years) and eleven healthy adults were tested for intestinal bacteria in fecal samples. The healthy adults were tested once under normal gluten diet conditions, and additionally, ten of them were tested again after one week of gluten-free dieting.
    Testing showed that untreated celiac disease patients had much more Bifidobacterium bifidum in their intestinal microbial communities than those of healthy adults. Treated celiac disease patients showed decreased levels of Bifidobacterium bifidum, as well as a reduction in the diversity of Lactobacillus and Bifidobacterium. These results most closely resembled those achieved by healthy adults. It would seem, then, that a gluten-free diet helps to balance and normalize intestinal bacteria populations.
    While a portion of the treated celiac disease patients displayed restored, normal intestinal bacteria, there were still differences in the presence of short-chain fatty acids. Such SCFAs would appear to correlate with celiac disease, regardless of the diet taken: healthy adults, both on gluten-free diets and on normal diets had significantly fewer SCFAs than both treated and untreated celiac disease patients. Gluten-free, healthy adults had the fewest, but treated celiac disease patients actually had the highest.
    We can take from this study that gluten-free diets help to lower both the presence and diversity of bacteria associated with celiac disease. A gluten-free diet does not 'fix' the presence of short-chain fatty acids in the intestines though, even though it is not entirely clear what these acids signal as to the health of the individual.
    Source:
     http://www.ncbi.nlm.nih.gov/pubmed/22542995

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023