• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    71,828
    Total Members
    3,093
    Most Online
    Ilkay
    Newest Member
    Ilkay
    Joined
  • Announcements

    • admin

      Frequently Asked Questions About Celiac Disease   04/07/2018

      This Celiac.com FAQ on celiac disease will guide you to all of the basic information you will need to know about the disease, its diagnosis, testing methods, a gluten-free diet, etc.   Subscribe to Celiac.com's FREE weekly eNewsletter   What are the major symptoms of celiac disease? Celiac Disease Symptoms What testing is available for celiac disease?  Celiac Disease Screening Interpretation of Celiac Disease Blood Test Results Can I be tested even though I am eating gluten free? How long must gluten be taken for the serological tests to be meaningful? The Gluten-Free Diet 101 - A Beginner's Guide to Going Gluten-Free Is celiac inherited? Should my children be tested? Ten Facts About Celiac Disease Genetic Testing Is there a link between celiac and other autoimmune diseases? Celiac Disease Research: Associated Diseases and Disorders Is there a list of gluten foods to avoid? Unsafe Gluten-Free Food List (Unsafe Ingredients) Is there a list of gluten free foods? Safe Gluten-Free Food List (Safe Ingredients) Gluten-Free Alcoholic Beverages Distilled Spirits (Grain Alcohols) and Vinegar: Are they Gluten-Free? Where does gluten hide? Additional Things to Beware of to Maintain a 100% Gluten-Free Diet What if my doctor won't listen to me? An Open Letter to Skeptical Health Care Practitioners Gluten-Free recipes: Gluten-Free Recipes
  • 0

    MILLET IS AN UNTAPPED GLUTEN-FREE RESOURCE


    Sheila Hughes

    Celiac.com 05/14/2013 - Despite the fact that millet is more nutritious than wheat, as well as other gluten-free grains, modern science lacks the processing technologies to manufacture it on a large scale. Millet is an age-old grain, however we have yet to harness its full potential due to this drawback.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Photo: CC--tonrulkinsThe preparation of millet includes fermentation, decortication, milling, and sieving. Most of millet being processed today is currently being down on a household level in rural areas, and due to this fact its availability is limited in urban areas. Another challenge with increasing millet production is making sure the nutritional properties are not depleted during the process.

    Current health benefits of millet include high anti-oxidants which could mean a reduced risk of cancer. It is also used more and more in diabetic products because it is high in polyunsaturated fat.

    While there currently isn't a system to produce millet on a large scale, there is research being done in this area. Perhaps in the near future we will see this grain being produced on the scale needed to make it common place in gluten-free products.

    Source:



    Image Caption: Photo: CC--tonrulkins
    0


    User Feedback

    Recommended Comments

    I have celiac and had a horrible reaction to Millet. It may not be safe for all.

    Uncontaminated milliet is gluten-free, but you may have a separate intolerance to it.

    Share this comment


    Link to comment
    Share on other sites
    Guest kristin

    Posted

    I have celiac and had a horrible reaction to Millet. It may not be safe for all.

    I am celiac and also had a bad reaction. Many other celiac also report problems with it.

    Share this comment


    Link to comment
    Share on other sites

    Millet is considered the 5th most cross reactive food for people with celiac disease. It may not adversely affect everyone, but I would strongly advise people to avoid it.

    Share this comment


    Link to comment
    Share on other sites
    Millet is considered the 5th most cross reactive food for people with celiac disease. It may not adversely affect everyone, but I would strongly advise people to avoid it.

    Millet is 100% gluten-free, but every celiac may have additional intolerance issues that they need to figure out.

    Share this comment


    Link to comment
    Share on other sites
    Guest Shannon

    Posted

    Millet has thyroid suppressing properties and should only be eaten in small amounts.

    Only people with thyroid disease have to watch out for goitrogenic foods. They will not effect a healthy thyroid.

    Share this comment


    Link to comment
    Share on other sites

    Shortly after being diagnosed a dozen years ago I was at a celiac conference. The speaker asked who had a reaction to millet and 75% of the people raised their hands. I thought I was reacting to it and asked my doctor about it. He ordered blood work that had to be sent to specialty lab in Nebraska and it showed I'm severely allergic to millet. The lab notes stated that they see a correlation between celiac and millet allergy.

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoticons maximum are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   5 Members, 0 Anonymous, 248 Guests (See full list)

  • Related Articles

    admin
    Preface: The following information was supplied originally in 1991 in the form of a letter to Phyllis Brogden, Chairperson of the Greater Philadelphia Celiac Sprue Support Group, by Donald D. Kasarda, who was a Research Chemist with the US Department of Agriculture at that time. Copies were sent to four other major celiac patient groups in the US. Dr. Kasarda retired from the USDA in 1999, but updated the information in February of 2000. Dr. Kasarda wishes to add the following disclaimer to the information: These are my opinions based on quite a few years of research in the area of proteins as they relate to celiac disease. They do not necessarily represent those of the Agricultural Research Service, U. S. Department of Agriculture. If you have any questions or comments regarding the piece, you can address them to Don at: kasarda@pw.usda.gov
    The only plants demonstrated to have proteins that damage the small intestines of people with celiac disease are those from wheat, rye, and barley (and the man-made wheat-rye cross called triticale). Although oats had generally been considered harmful until 1996, several high quality studies published since then indicate that oats are not harmful either in celiac disease or dermatitis herpetiformis. Some physicians choose not to accept these findings or else point out that there is some potential problem of contamination of oats by wheat. The contamination question has not yet been adequately researched, but may be overemphasized. The three harmful species are members of the grass family and are quite closely related to one another according to various schemes of plant classification (taxonomy). However, not all members of the grass family damage the intestines of celiac patients. Rice and corn, for example, are apparently harmless.
    Many other grains have not been subjected to controlled testing or to the same scrutiny as wheat, rye, barley, oats, rice, and corn in relation to celiac disease. In fact, only wheat and oats have been extensively studied in controlled experiments with the most up-to-date methods. If we accept corn and rice as safe, however, and this seems reasonable to me, then members of the grass family that are more closely related to these species (on the basis of taxonomy) than to wheat are likely to be safe. Such grasses include sorghum, millet, teff, ragi, and Jobs tears, which appear to be reasonably closely related to corn. In some cases, there are protein studies in support of this conclusion, although the studies are not sufficiently complete to provide more than guidance. Scientifically controlled feeding studies with celiac patients would provide a better answer. However, such studies are not likely to be carried out in the next few years because of high costs and the difficulty of obtaining patient participation (such studies would likely involve intestinal biopsy). In lieu of feeding studies, further studies of protein (and DNA) would provide the next best way to evaluate my suggestion that millet, sorghum, teff, ragi, and Jobs tears are not likely to be toxic in celiac disease, although even such studies are hampered at present by a lack of knowledge of which sequences in the wheat gluten proteins are harmful. There is evidence that a few sequences are harmful, but not all possibilities have yet been tested.
    The scientific name for bread wheat is Triticum aestivum var. aestivum--the first part of the name defines the genus (Triticum) and the second part, the species (aestivum). Species falling in the genus Triticum are almost certain to be harmful to celiac patients. Grain proteins of these species include the various types characteristic of the gluten proteins found in bread wheats (including the alpha-gliadins) that cause damage to the small intestine in celiac disease. Durum wheats (Triticum turgidum var. durum) used for pasta are also harmful to celiac patients. Some Triticum species of current concern include Triticum aestivum var. spelta (common names include spelt or spelta), Triticum turgidum var. polonicum (common names include Polish wheat, and, recently, Kamut), and Triticum monococcum var. monococcum (common names include einkorn and small spelt). I recommend that celiac patients avoid grain from these species. Also, given their very close relationship to bread and durum wheats, I think it is unlikely that these grains would be safe for those with classical allergic responses to wheat.
    Rye (Secale cereale) and barley (Hordeum vulgare) are toxic in celiac disease even though these two species are less closely related to bread wheat than spelta and Kamut. They belong to different genera, Secale and Hordeum, respectively, and lack alpha-gliadins, which may be an especially toxic fraction.
    There have been anecdotal reports suggesting a lack of toxicity in celiac disease for spelta and Kamut, along with anecdotal reports of the opposite, at least in the case of spelt-celiac patients who have been harmed by eating it. Controlled tests would be necessary to draw a firm conclusion, although they hardly seem necessary insofar as spelt and Kamut should be considered forms of wheat.
    The diagnosis, sometimes self-diagnosis, of celiac disease is occasionally made without benefit of reasonably rigorous medical or clinical tests, especially intestinal biopsy. Individuals who are diagnosed in this way without rigorous testing may not actually have celiac disease. Claims that particular foods cause this latter group no problems in relation to their celiac disease could cause confusion.
    Furthermore, celiac patients who report no problems in the short run with spelt or Kamut might experience relapse later. There is now adequate evidence that when celiac patients on a gluten-free diet (that is, a diet free of any proteins or peptides from wheat, rye, and barley) have wheat reintroduced to their diets, times-to-relapse vary enormously among individuals, ranging from hours to months, or even years. And this is for wheat, presumably the most toxic of all cereal grains to celiac patients.
    Additionally, the relapse may not be accompanied by obvious symptoms, but be recognized only by physicians through observation of characteristic changes in the small intestinal tissues obtained by biopsy. The reasons for the enormous variability of response times are not known. It may be speculated that the variability has something to do with the degree of recovery of the lining of the small intestine on a gluten-free diet, the degree of stress that the patient had been experiencing (including infections), and individual genetic differences.
    As I have indicated, all known grain species that cause problems for celiac patients are members of the grass family. In plant taxonomy, the grass family belongs to the Plant Kingdom Subclass known as monocotyledonous plants (monocots). The only other grouping at the Subclass level is that of dicotyledonous plants (dicots). Some other species about which celiac patients have questions actually are dicots, which places them in very distant relationship to the grass family. Such species include buckwheat, amaranth, quinoa, and rape. The seed of the last plant listed, rape, is not eaten, but an oil is pressed from the seeds that is commonly used in cooking. This oil is being marketed as canola oil. Because of their very distant relationship to the grass family and to wheat, it is highly unlikely that these dicots will contain the same type of protein sequence found in wheat proteins that causes problems for celiac patients. Of course, some quirk of evolution could have given rise in these dicots to proteins with the toxic amino acid sequence found in wheat proteins. But if such concerns were carried to a logical conclusion, celiac patients would have to exclude all plant foods from their diets. For example, buckwheat and rhubarb belong to the same plant family (Polygonaceae). If buckwheat were suspect for celiac patients, should not rhubarb, its close relation, be suspect as well?
    It may be in order to caution celiac patients that they may have undesirable reactions to any of these foods--reactions that are not related to celiac disease. Allergic reactions may occur to almost any protein, including proteins found in rice, but there is a great deal of individual variation in allergic reactions. Also, buckwheat, for example, has been claimed to contain a photosensitizing agent that will cause some people who have just eaten it to develop a skin rash when they are exposed to sunlight. Quinoa and amaranth may have high oxalate contents-approaching those of spinach and these oxalate levels may cause problems for some people. Such reactions should be looked for, but for most people, buckwheat, quinoa, or amaranth eaten in moderation apparently do not cause problems. (Buckwheat is sometimes found in mixture with wheat, which of course would cause a problem for celiac patients.) It seems no more necessary for all people with celiac disease to exclude buckwheat from their diets because some celiac patients react to it than it would be for all celiac patients to exclude milk from their diets because some celiac patients have a problem with milk.
    In conclusion, scientific knowledge of celiac disease, including knowledge of the proteins that cause the problem, and the grains that contain these proteins, is in a continuing state of development. There is much that remains to be done. Nevertheless, steady progress has been made over the years. As far as I know, the following statements are a valid description of the state of our knowledge:
    Spelt or spelta and Kamut are wheats. They have proteins toxic to celiac patients and should be avoided just as bread wheat, durum wheat, rye, barley, and triticale should be avoided. Rice and corn (maize) are not toxic to celiac patients. Certain cereal grains, such as various millets, sorghum, teff, ragi, and Jobs tears are close enough in their genetic relationship to corn to make it likely that these grains are safe for celiac patients to eat. However, significant scientific studies have not been carried out for these latter grains. There is no reason for celiac patients to avoid plant foods that are very distantly related to wheat. These include buckwheat, quinoa, amaranth, and rapeseed oil (canola). Some celiac patients might suffer allergies or other adverse reactions to these grains or foodstuffs made from them, but there is currently no scientific basis for saying that these allergies or adverse reactions have anything to do with celiac disease. A celiac patient may have an allergy to milk, but that does not mean that all celiac patients will have an adverse reaction to milk. Again, however, scientific studies are absent or minimal for these dicots. A list of my publications with pertinence to celiac disease follows. Cross-references to the literature for most of the points discussed above can be found in these publications.
    Kasarda, D. D., and DOvidio, R. 1999. Amino acid sequence of an alpha-gliadin gene from spelt wheat (Spelta) includes sequences active in celiac disease. Cereal Chem. 76:548-551. Kasarda, D. D. 1997. Celiac Disease. In Syllabus of the North American Society for Pediatric Gastroenterology & Nutrition, 4th Annual Postgraduate Course, Toronto, Ontario, Canada, pp. 13-21. Kasarda, D. D. 1997. Gluten and gliadin: precipitating factors in coeliac disease. In Coeliac Disease: Proceedings of the 7th International Symposium on Coeliac Disease (September 5-7, 1996), edited by M. Mäkki, P. Collin, and J. K. Visakorpi, Coeliac Disease Study Group, Institute of Medical Technology, University of Tampere,Tampere, Finland, pp. 195-212. Srinivasan, U., Leonard, N., Jones, E., Kasarda, D. D., Weir, D. G., OFarrelly, C., and Feighery, C. 1996. Absence of oats toxicity in coeliac disease. British Medical Journal 313:1300-1301. Tatham, A. S., Fido, R. J., Moore, C. M., Kasarda, D. D., Kuzmicky, D. D., Keen, J. N., and Shewry, P. R. Characterization of the major prolamins of tef (Eragrostis tef) and finger millet (Eleusine coracana). J. Cereal Sci. 24:65-71. 1996. Kasarda, D. D. 1994. Defining cereals toxicity in coeliac disease. In Gastrointestinal Immunology and Gluten-Sensitive Disease, edited by C. Feighery, and F. OFarrelly, Oak Tree Press, Dublin, pp. 203-220. Shewry, P. R., Tatham, A. S., and Kasarda, D. D. 1992. Cereal proteins and coeliac disease. In Coeliac Disease, edited by M. N. Marsh, Blackwell Scientific Publications, Oxford, U. K., pp. 305-348. De Ritis, G., Auricchio, S., Jones, H. W., Lew, E. J.-L., Bernardin, J. E. and Kasarda, D. D. 1988. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94:41-49. Kagnoff, M. F., Patterson, Y. J., Kumar, P. J., Kasarda, D. D., Carbone, F. R., Unsworth, D. J. and Austin, R. K. 1987. Evidence for the role of a human intestinal adenovirus in the pathogenesis of celiac disease. Gut 28:995-1001. Levenson, S. D., Austin, R. K., Dietler, M. D., Kasarda, D. D. and Kagnoff, M. F. 1985. Specificity of antigliadin antibody in celiac disease. Gastroenterology 89: 1-5. Kagnoff, M. F., Austin, R. K., Hubert, J. J., Bernardin, J. E. and Kasarda, D. D. 1984. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med. 160: 1544-1557. Grains in Relation to Celiac (Coeliac) Disease by Donald D. Kasarda.
    An annotated copy: http://wheat.pw.usda.gov/topics/

    Heather Curtis
    Celiac.com 10/26/2009 - With the ever-increasing awareness of celiac disease comes an expanding market of gluten-free options.  The days of lengthy supermarket trips spent pouring over labels has given way to the tiny oasis of the “gluten-free” section is many grocery stores. 
    While this section is still limited in many respects, the food production industry as a whole has become aware of the need to cater to the expanding gluten-free community.  Gluten-free snacks, prepackaged meals, and baking supplies are no longer elusive, and the variety is continually expanding.  While rice, potato, and corn flours are common strongholds in a Celiac’s kitchen, there is now a new wave of flavorful flours from Peru making their way into the United States.
    Many Peruvian heritage grains, dating back to pre-Incan times, have been found to be naturally gluten-free and incredibly nutritious.  The first wave of these grains and flours to hit the U.S. market come to us from Zocalo Gourmet.  Marching to shelves are kaniwa, mesquite, purple corn, and sweet potato flours.  Each has a distinct flavor and “personality” that is sure to delight any gluten-free baker and reinvigorate their favorite recipes. 
    Kaniwa is a species of goosefoot, closely related to quinoa.  This tiny grain is packed with protein and has an Earthy taste that lends itself well to breads, pancakes, and muffins.   
    Mesquite is also protein rich and imparts a warm, sweet, slightly smoky taste on foods while enhancing the flavors of cinnamon, chocolate, caramel, and coffee.  Adding mesquite flour to your favorite recipes will transform their flavor and put a completely new spin on your old favorites.
    Purple Corn can be used in any recipe calling for traditional corn meal or flour while providing an antioxidant boost. Although similar in nutrition to yellow corn, purple corn contains substantial amounts of phenolics and anthocyanins, among other phytochemicals, which gives the corn its vibrant color. Its main colorant is cianidin-3-b-glucosa which is a known antioxidant. The high anthocianin content does not degrade with heat exposure.
    Sweet Potato is a velvety flour that holds moisture well, imparts a subtle sweetness on baked goods, and is incredibly versatile. 
    With these flours come more complete flavor and nutritional profiles for the gluten intolerant.  To learn more about these flours and how they can be used check out:
    http://www.zocalogourmet.com/products/floursgrains2.html
    and
    http://zocalogourmet.blogspot.com/ 
     


    Jefferson Adams
    Celiac.com 12/03/2010 - An interesting finding regarding corn from a research team based in Sweden that studied the effects of both gluten and corn on patients with celiac disease.
    The research team included G. Kristjánsson, M. Högman, P. Venge, R. and Hällgren, who are affiliated variously with the Department of Gastroenterology, the Department of Medical Cell Biology, Section of Integrative Physiology, the Laboratory for Inflammation Research, and the Department of Rheumatology at Uppsala University Hospital in Uppsala, Sweden.
    Specifically, the team sought to better understand the facets of nitric oxide (NO) production induced by rectal gluten challenge and the relationship between nitric oxide production and mucosal granulocyte activation.
    The team measured the release of rectal nitric oxide in 13 patients with celiac disease and in 18 control subjects. The team measured levels both before and after rectal wheat gluten challenge.
    To collect the gas, the team used a rectal balloon and a newly developed instrument, which allows simultaneous measurements of concentrations of granulocyte mediators in the rectal mucosa. This new technique is called the “mucosal patch technique”.
    The technique allowed the team to measure myeloperoxidase (MPO), eosinophil cationic protein (ECP), and histamine.
    They found that concentrations of rectal nitric oxide increased in ALL celiac patients after wheat gluten challenge, peaking at 15 hours (average concentrations of 9464 (SEM 2393) parts per billion (ppb), with a range of 250–24982 ppb.
    The maximum MPO and ECP increase occurred five hours after challenge. At the fifteen hour mark, the team observed a correlation between mucosal MPO and nitric oxide production.
    They then compared their results against measurements taken after corn gluten challenge. Six of the celiac patients showed an increase in nitric oxide production 15 hours after rectal corn gluten challenge, though much smaller than after gluten challenge. The control group showed no increases after either challenge.
    The main findings showed that mucosal activation of neutrophils and eosinophils precedes pronounced enhancement of mucosal nitric oxide production after rectal wheat gluten challenge in patients with celiac disease.
    The researchers also found that some patients with celiac disease show signs of an inflammatory reaction after rectal corn gluten challenge, shown by increased nitric oxide production and activation of granulocyte markers.
    The fact that nearly half of the celiac patients in this small sample showed increases in nitric oxide production after a corn challenge is definitely interesting, and calls out for further study.
    Source:

    Gut 2005;54:769-774. doi:10.1136/gut.2004.057174 Update by Elaine E. Thompson, Ph.D. submitted 12/03/2010:
    In this study the researchers discovered that the cornmeal they tested was contaminated with wheat. Please revise this blog entry to reflect the flaw in the study."The manufacturer claimed that their corn product was free from wheat or other cereals. We tested the product at the Swedish National Food Administration (Livsmedelsverket) and it was found to be contaminated with 82 μg/g (ppm), which is less than the usual allowed amount in a gluten free diet (<200 ppm) according to the Codex Alimentarius Standard for gluten free foods, and far less than what has been found to be a safe amount of gluten contamination when correlated with histology in oral challenge studies. It cannot be excluded that the small amounts of gluten present in the corn preparation induced an inflammatory reaction as the mucosal patch technique is very sensitive. "


    Jefferson Adams
    Celiac.com 07/31/2013 - People with celiac disease react to specific proteins in wheat, and a team of scientists from Washington State University are attempting to develop new varieties of wheat that suppress those proteins and are safe for those with celiac disease.
    Currently, they can silence nearly 90 percent of the protein that causes a gluten reaction. They hope their research efforts will lead them to a strain that suppress 100% of the proteins that trigger gluten reactions.
    Since people with celiac disease react to specific proteins in wheat, the simple solution is to eliminate those proteins to develop an allergy-free wheat.
    According to the U.S. National Institutes of Health, wheat is made up of three groups of proteins : gliadins, low molecular weight glutenin subunits and high molecular weight glutenin subunits.
    The majority of people with celiac disease can tolerate the high molecular weight glutenin proteins, so the Washington State scientists attempted to silence the genetic expression of the other proteins in wheat.
    The high molecular weight glutenins are necessary for baking, so the wheat should produce flour suitable for a variety of breads and dough.
    The researchers are using a genetic technique called RNA interference, that has enabled them to silence the expression of more than 80 percent of the wheat genes associated with autoimmune reactions.
    “With our molecular genetic technologies we have wheat plants that silence 85.6 percent of the immunogenic genes,” said Diter von Wettstein, a plant science professor at Washington State. “The chances of getting plants with more than 90 percent silencing is good.”
    Such wheat hybrids might not work for all people with celiac disease, but could they provide benefits for the majority of people with celiac disease?
    What do you think? Would you try it? Share your thoughts below.
    Read More at Producer.com.

  • Recent Articles

    Jefferson Adams
    Celiac.com 04/19/2018 - Previous genome and linkage studies indicate the existence of a new disease triggering mechanism that involves amino acid metabolism and nutrient sensing signaling pathways. In an effort to determine if amino acids might play a role in the development of celiac disease, a team of researchers recently set out to investigate if plasma amino acid levels differed among children with celiac disease compared with a control group.
     
    The research team included Åsa Torinsson Naluai, Ladan Saadat Vafa, Audur H. Gudjonsdottir, Henrik Arnell, Lars Browaldh, and Daniel Agardh. They are variously affiliated with the Institute of Biomedicine, Department of Microbiology & Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; the Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden; the Department of Clinical Science and Education, Karolinska Institute, Sodersjukhuset, Stockholm, Sweden; the Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; the Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; and with the Nathan S Kline Institute in the U.S.A.
    First, the team used liquid chromatography-tandem mass spectrometry (LC/MS) to analyze amino acid levels in fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls. They then crafted a general linear model using age and experimental effects as covariates to compare amino acid levels between children with celiac disease and non-celiac control subjects.
    Compared with the control group, seven out of twenty-three children with celiac disease showed elevated levels of the the following amino acids: tryptophan; taurine; glutamic acid; proline; ornithine; alanine; and methionine.
    The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects.
    This study shows that amino acids can influence inflammation and may play a role in the development of celiac disease.
    Source:
    PLoS One. 2018; 13(3): e0193764. doi: & 10.1371/journal.pone.0193764

    Jefferson Adams
    Celiac.com 04/18/2018 - To the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service animals.
    If you’ve flown anywhere lately, you may have seen them. People flying with their designated “emotional support” animals. We’re not talking genuine service animals, like seeing eye dogs, or hearing ear dogs, or even the Belgian Malinois that alerts its owner when there is gluten in food that may trigger her celiac disease.
    Now, to be honest, some of those animals in question do perform a genuine service for those who need emotional support dogs, like veterans with PTSD.
    However, many of these animals are not service animals at all. Many of these animals perform no actual service to their owners, and are nothing more than thinly disguised pets. Many lack proper training, and some have caused serious problems for the airlines and for other passengers.
    Now the major airlines are taking note and introducing stringent requirements for service animals.
    Delta was the first to strike. As reported by the New York Times on January 19: “Effective March 1, Delta, the second largest US airline by passenger traffic, said it will require passengers seeking to fly with pets to present additional documents outlining the passenger’s need for the animal and proof of its training and vaccinations, 48 hours prior to the flight.… This comes in response to what the carrier said was a 150 percent increase in service and support animals — pets, often dogs, that accompany people with disabilities — carried onboard since 2015.… Delta said that it flies some 700 service animals a day. Among them, customers have attempted to fly with comfort turkeys, gliding possums, snakes, spiders, and other unusual pets.”
    Fresh from an unsavory incident with an “emotional support” peacock incident, United Airlines has followed Delta’s lead and set stricter rules for emotional support animals. United’s rules also took effect March 1, 2018.
    So, to the relief of many bewildered passengers and crew, no more comfort turkeys, geese, possums or other questionable pets will be flying on Delta or United without meeting the airlines' strict new requirements for service and emotional support animals.
    Source:
    cnbc.com

    admin
    WHAT IS CELIAC DISEASE?
    Celiac disease is an autoimmune condition that affects around 1% of the population. People with celiac disease suffer an autoimmune reaction when they consume wheat, rye or barley. The immune reaction is triggered by certain proteins in the wheat, rye, or barley, and, left untreated, causes damage to the small, finger-like structures, called villi, that line the gut. The damage occurs as shortening and villous flattening in the lamina propria and crypt regions of the intestines. The damage to these villi then leads to numerous other issues that commonly plague people with untreated celiac disease, including poor nutritional uptake, fatigue, and myriad other problems.
    Celiac disease mostly affects people of Northern European descent, but recent studies show that it also affects large numbers of people in Italy, China, Iran, India, and numerous other places thought to have few or no cases.
    Celiac disease is most often uncovered because people experience symptoms that lead them to get tests for antibodies to gluten. If these tests are positive, then the people usually get biopsy confirmation of their celiac disease. Once they adopt a gluten-free diet, they usually see gut healing, and major improvements in their symptoms. 
    CLASSIC CELIAC DISEASE SYMPTOMS
    Symptoms of celiac disease can range from the classic features, such as diarrhea, upset stomach, bloating, gas, weight loss, and malnutrition, among others.
    LESS OBVIOUS SYMPTOMS
    Celiac disease can often less obvious symptoms, such fatigue, vitamin and nutrient deficiencies, anemia, to name a few. Often, these symptoms are regarded as less obvious because they are not gastrointestinal in nature. You got that right, it is not uncommon for people with celiac disease to have few or no gastrointestinal symptoms. That makes spotting and connecting these seemingly unrelated and unclear celiac symptoms so important.
    NO SYMPTOMS
    Currently, most people diagnosed with celiac disease do not show symptoms, but are diagnosed on the basis of referral for elevated risk factors. 

    CELIAC DISEASE VS. GLUTEN INTOLERANCE
    Gluten intolerance is a generic term for people who have some sort of sensitivity to gluten. These people may or may not have celiac disease. Researchers generally agree that there is a condition called non-celiac gluten sensitivity. That term has largely replaced the term gluten-intolerance. What’s the difference between celiac disease and non-celiac gluten-sensitivity? 
    CELIAC DISEASE VS. NON-CELIAC GLUTEN SENSITIVITY (NCGS)
    Gluten triggers symptoms and immune reactions in people with celiac disease. Gluten can also trigger symptoms in some people with NCGS, but the similarities largely end there.

    There are four main differences between celiac disease and non-celiac gluten sensitivity:
    No Hereditary Link in NCGS
    Researchers know for certain that genetic heredity plays a major role in celiac disease. If a first-degree relative has celiac disease, then you have a statistically higher risk of carrying genetic markers DQ2 and/or DQ8, and of developing celiac disease yourself. NCGS is not known to be hereditary. Some research has shown certain genetic associations, such as some NCGS patients, but there is no proof that NCGS is hereditary. No Connection with Celiac-related Disorders
    Unlike celiac disease, NCGS is so far not associated with malabsorption, nutritional deficiencies, or a higher risk of autoimmune disorders or intestinal malignancies. No Immunological or Serological Markers
    People with celiac disease nearly always test positive for antibodies to gluten proteins. Researchers have, as yet, identified no such antobodies or serologic markers for NCGS. That means that, unlike with celiac disease, there are no telltale screening tests that can point to NCGS. Absence of Celiac Disease or Wheat Allergy
    Doctors diagnose NCGS only by excluding both celiac disease, an IgE-mediated allergy to wheat, and by the noting ongoing adverse symptoms associated with gluten consumption. WHAT ABOUT IRRITABLE BOWEL SYNDROME (IBS) AND IRRITABLE BOWEL DISEASE (IBD)?
    IBS and IBD are usually diagnosed in part by ruling out celiac disease. Many patients with irritable bowel syndrome are sensitive to gluten. Many experience celiac disease-like symptoms in reaction to wheat. However, patients with IBS generally show no gut damage, and do not test positive for antibodies to gliadin and other proteins as do people with celiac disease. Some IBS patients also suffer from NCGS.

    To add more confusion, many cases of IBS are, in fact, celiac disease in disguise.

    That said, people with IBS generally react to more than just wheat. People with NCGS generally react to wheat and not to other things, but that’s not always the case. Doctors generally try to rule out celiac disease before making a diagnosis of IBS or NCGS. 
    Crohn’s Disease and celiac disease share many common symptoms, though causes are different.  In Crohn’s disease, the immune system can cause disruption anywhere along the gastrointestinal tract, and a diagnosis of Crohn’s disease typically requires more diagnostic testing than does a celiac diagnosis.  
    Crohn’s treatment consists of changes to diet and possible surgery.  Up to 10% of Crohn's patients can have both of conditions, which suggests a genetic connection, and researchers continue to examine that connection.
    Is There a Connection Between Celiac Disease, Non-Celiac Gluten Sensitivity and Irritable Bowel Syndrome? Large Number of Irritable Bowel Syndrome Patients Sensitive To Gluten Some IBD Patients also Suffer from Non-Celiac Gluten Sensitivity Many Cases of IBS and Fibromyalgia Actually Celiac Disease in Disguise CELIAC DISEASE DIAGNOSIS
    Diagnosis of celiac disease can be difficult. 

    Perhaps because celiac disease presents clinically in such a variety of ways, proper diagnosis often takes years. A positive serological test for antibodies against tissue transglutaminase is considered a very strong diagnostic indicator, and a duodenal biopsy revealing villous atrophy is still considered by many to be the diagnostic gold standard. 
    But this idea is being questioned; some think the biopsy is unnecessary in the face of clear serological tests and obvious symptoms. Also, researchers are developing accurate and reliable ways to test for celiac disease even when patients are already avoiding wheat. In the past, patients needed to be consuming wheat to get an accurate test result. 
    Celiac disease can have numerous vague, or confusing symptoms that can make diagnosis difficult.  Celiac disease is commonly misdiagnosed by doctors. Read a Personal Story About Celiac Disease Diagnosis from the Founder of Celiac.com Currently, testing and biopsy still form the cornerstone of celiac diagnosis.
    TESTING
    There are several serologic (blood) tests available that screen for celiac disease antibodies, but the most commonly used is called a tTG-IgA test. If blood test results suggest celiac disease, your physician will recommend a biopsy of your small intestine to confirm the diagnosis.
    Testing is fairly simple and involves screening the patients blood for antigliadin (AGA) and endomysium antibodies (EmA), and/or doing a biopsy on the areas of the intestines mentioned above, which is still the standard for a formal diagnosis. Also, it is now possible to test people for celiac disease without making them concume wheat products.

    BIOPSY
    Until recently, biopsy confirmation of a positive gluten antibody test was the gold standard for celiac diagnosis. It still is, but things are changing fairly quickly. Children can now be accurately diagnosed for celiac disease without biopsy. Diagnosis based on level of TGA-IgA 10-fold or more the ULN, a positive result from the EMA tests in a second blood sample, and the presence of at least 1 symptom could avoid risks and costs of endoscopy for more than half the children with celiac disease worldwide.

    WHY A GLUTEN-FREE DIET?
    Currently the only effective, medically approved treatment for celiac disease is a strict gluten-free diet. Following a gluten-free diet relieves symptoms, promotes gut healing, and prevents nearly all celiac-related complications. 
    A gluten-free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. This is a difficult task as there are many hidden sources of gluten found in the ingredients of many processed foods. Still, with effort, most people with celiac disease manage to make the transition. The vast majority of celiac disease patients who follow a gluten-free diet see symptom relief and experience gut healing within two years.
    For these reasons, a gluten-free diet remains the only effective, medically proven treatment for celiac disease.
    WHAT ABOUT ENZYMES, VACCINES, ETC.?
    There is currently no enzyme or vaccine that can replace a gluten-free diet for people with celiac disease.
    There are enzyme supplements currently available, such as AN-PEP, Latiglutetenase, GluteGuard, and KumaMax, which may help to mitigate accidental gluten ingestion by celiacs. KumaMax, has been shown to survive the stomach, and to break down gluten in the small intestine. Latiglutenase, formerly known as ALV003, is an enzyme therapy designed to be taken with meals. GluteGuard has been shown to significantly protect celiac patients from the serious symptoms they would normally experience after gluten ingestion. There are other enzymes, including those based on papaya enzymes.

    Additionally, there are many celiac disease drugs, enzymes, and therapies in various stages of development by pharmaceutical companies, including at least one vaccine that has received financial backing. At some point in the not too distant future there will likely be new treatments available for those who seek an alternative to a lifelong gluten-free diet. 

    For now though, there are no products on the market that can take the place of a gluten-free diet. Any enzyme or other treatment for celiac disease is intended to be used in conjunction with a gluten-free diet, not as a replacement.

    ASSOCIATED DISEASES
    The most common disorders associated with celiac disease are thyroid disease and Type 1 Diabetes, however, celiac disease is associated with many other conditions, including but not limited to the following autoimmune conditions:
    Type 1 Diabetes Mellitus: 2.4-16.4% Multiple Sclerosis (MS): 11% Hashimoto’s thyroiditis: 4-6% Autoimmune hepatitis: 6-15% Addison disease: 6% Arthritis: 1.5-7.5% Sjögren’s syndrome: 2-15% Idiopathic dilated cardiomyopathy: 5.7% IgA Nephropathy (Berger’s Disease): 3.6% Other celiac co-morditities include:
    Crohn’s Disease; Inflammatory Bowel Disease Chronic Pancreatitis Down Syndrome Irritable Bowel Syndrome (IBS) Lupus Multiple Sclerosis Primary Biliary Cirrhosis Primary Sclerosing Cholangitis Psoriasis Rheumatoid Arthritis Scleroderma Turner Syndrome Ulcerative Colitis; Inflammatory Bowel Disease Williams Syndrome Cancers:
    Non-Hodgkin lymphoma (intestinal and extra-intestinal, T- and B-cell types) Small intestinal adenocarcinoma Esophageal carcinoma Papillary thyroid cancer Melanoma CELIAC DISEASE REFERENCES:
    Celiac Disease Center, Columbia University
    Gluten Intolerance Group
    National Institutes of Health
    U.S. National Library of Medicine
    Mayo Clinic
    University of Chicago Celiac Disease Center

    Jefferson Adams
    Celiac.com 04/17/2018 - Could the holy grail of gluten-free food lie in special strains of wheat that lack “bad glutens” that trigger the celiac disease, but include the “good glutens” that make bread and other products chewy, spongey and delicious? Such products would include all of the good things about wheat, but none of the bad things that might trigger celiac disease.
    A team of researchers in Spain is creating strains of wheat that lack the “bad glutens” that trigger the autoimmune disorder celiac disease. The team, based at the Institute for Sustainable Agriculture in Cordoba, Spain, is making use of the new and highly effective CRISPR gene editing to eliminate the majority of the gliadins in wheat.
    Gliadins are the gluten proteins that trigger the majority of symptoms for people with celiac disease.
    As part of their efforts, the team has conducted a small study on 20 people with “gluten sensitivity.” That study showed that test subjects can tolerate bread made with this special wheat, says team member Francisco Barro. However, the team has yet to publish the results.
    Clearly, more comprehensive testing would be needed to determine if such a product is safely tolerated by people with celiac disease. Still, with these efforts, along with efforts to develop vaccines, enzymes, and other treatments making steady progress, we are living in exciting times for people with celiac disease.
    It is entirely conceivable that in the not-so-distant future we will see safe, viable treatments for celiac disease that do not require a strict gluten-free diet.
    Read more at Digitaltrends.com , and at Newscientist.com

    Jefferson Adams
    Celiac.com 04/16/2018 - A team of researchers recently set out to investigate whether alterations in the developing intestinal microbiota and immune markers precede celiac disease onset in infants with family risk for the disease.
    The research team included Marta Olivares, Alan W. Walker, Amalia Capilla, Alfonso Benítez-Páez, Francesc Palau, Julian Parkhill, Gemma Castillejo, and Yolanda Sanz. They are variously affiliated with the Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/Catedrático Agustín Escardin, Paterna, Valencia, Spain; the Gut Health Group, The Rowett Institute, University of Aberdeen, Aberdeen, UK; the Genetics and Molecular Medicine Unit, Institute of Biomedicine of Valencia, National Research Council (IBV-CSIC), Valencia, Spain; the Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire UK; the Hospital Universitari de Sant Joan de Reus, IISPV, URV, Tarragona, Spain; the Center for regenerative medicine, Boston university school of medicine, Boston, USA; and the Institut de Recerca Sant Joan de Déu and CIBERER, Hospital Sant Joan de Déu, Barcelona, Spain
    The team conducted a nested case-control study out as part of a larger prospective cohort study, which included healthy full-term newborns (> 200) with at least one first relative with biopsy-verified celiac disease. The present study includes 10 cases of celiac disease, along with 10 best-matched controls who did not develop the disease after 5-year follow-up.
    The team profiled fecal microbiota, as assessed by high-throughput 16S rRNA gene amplicon sequencing, along with immune parameters, at 4 and 6 months of age and related to celiac disease onset. The microbiota of infants who remained healthy showed an increase in bacterial diversity over time, especially by increases in microbiota from the Firmicutes families, those who with no increase in bacterial diversity developed celiac disease.
    Infants who subsequently developed celiac disease showed a significant reduction in sIgA levels over time, while those who remained healthy showed increases in TNF-α correlated to Bifidobacterium spp.
    Healthy children in the control group showed a greater relative abundance of Bifidobacterium longum, while children who developed celiac disease showed increased levels of Bifidobacterium breve and Enterococcus spp.
    The data from this study suggest that early changes in gut microbiota in infants with celiac disease risk could influence immune development, and thus increase risk levels for celiac disease. The team is calling for larger studies to confirm their hypothesis.
    Source:
    Microbiome. 2018; 6: 36. Published online 2018 Feb 20. doi: 10.1186/s40168-018-0415-6