• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,411
    Total Members
    3,093
    Most Online
    Liza Wolfe
    Newest Member
    Liza Wolfe
    Joined
  • 0

    Teff, Ethiopia's Gluten-free Super Grain


    Jefferson Adams

    Celiac.com 04/04/2014 - Many people looking for gluten-free grains that pack a big punch turn to ancient grains like quinoa, sorghum, and millet. Now, more and more people are expanding that list to include teff, the ancient grain that is a staple in the Ethiopian culture.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Photo: Wikimedia Commons--rasbakIn fact, in some circles, teff is being called the next rival to quinoa. That may be due in part to the Ethiopian government's campaign to promote teff to western markets. The main selling points are that teff is gluten-free and nutritious, rich in amino acids, protein, iron and calcium. Teff also makes a good substitute for wheat flour in many recipes.

    These facts, along with plans by the Ethiopian government to double the production of teff by next year could help feed the growing global demand for gluten-free grains.

    I've known about teff since around the turn of the century. There was, and I think still is, a great little Ethiopian restaurant in town that, with a few days advance notice, would make injera, the spongy traditional bread using pure teff and no wheat. Their food was delicious, and I've remembered teff fondly ever since then.

    Source:

    0


    User Feedback

    Recommended Comments

    Guest nikheil

    Posted

    Just make sure that if you go to an Ethiopian restaurant you TRIPLE check that their injera is made from 100% teff. A lot of restaurants cut it with a small amount of barley, which I found out by getting violently ill (this was after being assured that the injera was gluten free. Afterward: "yes gluten free. No wheat flour. Just a little bit of barley". Ugh.

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   20 Members, 0 Anonymous, 1,171 Guests (See full list)

  • Related Articles

    Wendy Cohan
    Celiac.com 10/02/2008 - Whole grains are good sources of B-Vitamins and minerals such as calcium, iron, magnesium, and selenium, but one of their most important nutritional benefits is the fiber they bring to our diets.  Whole grains such as wheat, brown rice, and oats include both soluble and insoluble fiber.  Soluble fiber is easy to remember – it is water soluble, and as such can be assimilated into the body, where it plays an important role in blood sugar regulation and cholesterol balance.   Soluble fiber also helps provide a sense of fullness or satiety.  Insoluble fiber is - you guessed it - insoluble in water, and is not assimilated into the body, but passes through the digestive tract and is eliminated.  That does not mean insoluble fiber has a less important nutritional role to play.  Insoluble fiber is very important in keeping our digestive and elimination systems regular.  Fiber aids the transit of toxic substances out of the body, and in doing so, helps to reduce the incidence of colon and rectal cancers.
    In eliminating gluten grains from your diet, have you wondered what you are missing nutritionally?  Are you able to get adequate replacements for the nutrients in wheat, barley, rye, and oats, from the other nutritional components of your diet?  The answer is a qualified yes.  We know this on several levels.  For tens of thousands of years, entire cultures have thrived without growing or consuming any of the gluten grains.  We also know, from looking at what nutrients gluten grains provide, that there are more than adequate sources of these nutrients in alternative grains, and from vegetable sources.  Fiber is something we do need to be aware of, though.  Studies have shown that standard gluten-free diets are low in fiber, especially when baking with the “white” alternative products like white or sweet rice flour, tapioca starch, and potato starch.  We can remedy this by eating alternative grains in whole, unprocessed states, and by including nuts, seeds, and other sources of fiber such as dried coconut and legumes in our diets.  Wheat is an excellent source of Vitamin E, so those on gluten-free diets might want to supplement with a good brand of Vitamin E.
    Some commercial gluten-free flour blends seek to duplicate white flour, and are made primarily of white rice flour, tapioca starch, and potato starch (see the nutrition comparisons on the next page).  These products are nearly devoid of nutrition and contain almost no fiber.  Using these types of products result in baked goods that are the nutritional equivalent of wonder-bread.  If you didn’t eat wonder-bread before going gluten-free, why should you attempt to duplicate it now?  When making your flour blends, coming up with new recipes, and altering traditional wheat-flour recipes, try to include alternative grain products (and sometimes nut flours) that contain substantial amounts of fiber, protein, calcium, and iron, all nutrients found in whole grains, but in much smaller amounts in highly processed grains.  Quinoa, sorghum, teff, amaranth, brown rice and millet flour are all good products to try.
    See the chart attached to this article (the link to it is in the "Attachments" section below) for the nutrient content of the many gluten-free alternative grains, starches, and nut flours.  The highest levels of nutrients in each category are noted, and you can see what nutritional powerhouses grains like teff, quinoa, sorghum, and amaranth are compared to white rice flour, tapioca starch, and potato starch.  


    Jefferson Adams
    Celiac.com 10/03/2012 - In an effort to expand the market for Kansas-grown sorghum, a professor at Kansas State University and a group of food science graduate students are conducting research into the use of sorghum in new gluten-free food products for people with celiac disease.
    Kansas is one of the top sorghum producers in the U.S. In 2006, as the manufacturing of gluten-free products started to take off, sorghum farmers began looking for alternative uses for their crop.
    Fadi Aramouni, K-State professor of food science, said that quest triggered the university's research into sorghum as a gluten alternative. In America, sorghum has traditionally been used for animal feed, but the growing market for gluten-free foods, along with the availability of food-grade sorghum, is fueling the use of sorghum in these types of food products, he said.
    Aramouni said the research initially focused on developing a sorghum-based tortilla. He and the students looked at the six varieties of sorghum grown in Kansas and determined which one they thought would work best. They considered factors such as grain hardness, protein, carbohydrate and fiber content, shelf life, dough quality, and flavor.
    Right away, the research team ran into problems with milling, "because it turns out that the particle size during the milling will affect the properties of the sorghum flour," Armuni said. One problem is that sorghum tends to form a batter rather than a dough, so it is necessary to add eggs and other stabilizers, such as gums, to craft a suitable dough.
    Using the facilities at Kansas State's grain and science industry department, along with the U.S. Department of Agriculture laboratory in Manhattan, the research team has been able to create tortillas, breads, Belgian waffles and waffle cones from sorghum.
    Their research is largely funded by the Kansas Department of Agriculture, and includes comparing the glycemic index of their sorghum products to those made of wheat, corn and rice. The glycemic index measures how a given carbohydrate raises blood glucose.
    In the last few years, the team's sorghum-based creations have won first prize in the American Association of Cereal Chemists competition.
    using their new knowledge of sorghum, the researchers are now working to create gluten-free soft pretzels, sweet rolls and dinner rolls, vanilla-flavored Waffle Cones and Crunchums, a raspberry-jalapeno-flavored sorghum snack.
    "This is not cooking. This is science," Aramouni said.
    It is important science, he adds, because people who must eat gluten-free food need better, more nutritious products. What new gluten-free products would you like to see on the market? Share your comments below.
    Source:
    CJOnline.com

    Jefferson Adams
    Celiac.com 08/28/2013 - Researchers at Washington State University are 'very close' to developing celiac-safe wheat strains, says lead project researcher Diter von Wettstein.
    Rich Koenig, associate dean and director of WSU Extension, says the wheat project involves removing the gluten material that causes the adverse reaction in people who have celiac disease.
    Von Wettstein says that his team has developed wheat hybrids that have 76.4 percent less gluten proteins than conventional strains, and that the next step is to eliminate the remaining percentage.
    Von Wettstein is working two distinct angles on this project. The first approach uses genetic modification, while the seconds does not. He acknowledges that doing it without genetic modification "would be better…But in the end, if the only way to do this is through genetic modification of wheat, it could still be a major advancement for people who suffer from that disease."
    The projects may still take a while as von Wettstein works to identify, selectively silence and remove the responsible genes.
    One caveat is that even if the project is successful, the wheat may not produce flour suitable for baking, though Koenig says that producing wheat suitable for people with celiac disease would be, nonetheless, an "important subsection of wheat production"
    Funding for von Wettstein's research is coming from The National Institutes of Health and Washington State's Life Science Discovery Fund.
    Source:
    http://www.capitalpress.com/content/mw-Barley-071913-art

    Jefferson Adams
    Celiac.com 10/21/2014 - Insects offer one of the most concentrated and efficient forms of protein on the planet, and they are a common food in many parts of the world.
    So, could high-protein flour made out of crickets change the future of gluten-free foods? A San Francisco Bay Area company is looking to make that possibility a reality.
    The company, Bitty Foods, is making flour from slow-roasted crickets that are then milled and combined with tapioca and cassava to make a high-protein flour that is gluten-free. According to the Bitty Foods website, a single cup of cricket flour contains a whopping 28 grams of protein.
    So can Bitty Foods persuade gluten-free consumers to try their high protein gluten-free flour? Only time will tell. In the mean time, stay tuned for more cricket flour developments.
    What do you think? Would you give it a try? If it worked well for baking, would you use it?

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023