• Popular Contributors

  • Ads by Google:

  • Who's Online   4 Members, 0 Anonymous, 290 Guests (See full list)

  • Related Articles

    Scott Adams
    1 cup sugar
    ½ cup butter
    2 eggs
    3 tablespoons sour milk mixed with a bit of lemon juice
    1 teaspoon soda
    Vanilla
    2 cups corn starch
    Pinch of salt
    3 bananas (mashed)
    Mix everything together with the exception of the bananas. In a separate bowl, beat the bananas with a mixer until smooth. Combine the two and mix thoroughly. Bake in a loaf pan at 325F for 60-70 minutes (or longer) until a toothpick stuck in the center comes out clean.

    Scott Adams
    In a blender process until smooth:
    1 cup milk or rice milk or soy milk or buttermilk or water
    1 egg or 2 egg whites
    ¼ cup oil (canola or safflower)
    ¼ cup pure maple syrup
    In a separate bowl, mix these dry ingredients with a wire whisk:
    1 cup cornmeal
    1 cup rice flour (brown or white or a combination of both)
    2 teaspoons baking powder
    1 teaspoon baking soda
    ¼ to ½ teaspoon xanthan gum
    ¼ to ½ teaspoon salt
    Combine the wet and dry ingredients and mix gently but well for about one minute, then pour into a 8 or 9 square baking pan that has been sprayed or oiled. Bake at 400F for 25 minutes. Serve warm, directly from the pan, or let cool for 5 to 10 minutes.
    For a savory meal:
    Using a 9 x 12 pan (or close to it), spray or oil it, then put in:
    1 large can diced tomatoes (28 oz.)
    1 can drained beans (like pinto, black bean, garbanzo, or whatever you like)
    1 or 2 diced zucchini
    Some other vegetable you like, corn, mushrooms, diced red or green bell peppers etc.
    Sprinkle on chili powder or pizza flavorings like basil and oregano to your taste
    Then pour cornbread mix right on top and bake 25 to 30 minutes at 400F.
    For a dessert cornbread:
    On the bottom of the pan, pour a can of fruit cocktail or sliced peaches or a can of pie filling
    To the dry ingredients add: ¼ cup sugar, then bake as above.
    For a Gingerbread:
    Add ¼ cup molasses to the wet ingredients
    To the dry ingredients add:
    2 teaspoons ground ginger
    1 teaspoon ground cinnamon
    ¼ teaspoon ground cloves
    Optional: grated fresh ginger or finely chopped candied ginger, or both
    To make it more cake-like, decrease the cornmeal to ½ cup, and increase the flour to 1 ½ cups
    Bake as the original recipe.

    Scott Adams
    This recipe comes to us from Karen Oland.
    Preheat oven to 475F. While preheating, put cast iron skillet in oven, with a scant tablespoon corn, safflower or peanut oil in bottom. 6 heaping soup spoons (approx 1 cup) of corn flour/corn starch or corn flour/sorghum flour mix (3:1)*
    1 rounded teaspoon baking powder
    ¼ teaspoon salt
    ¼ cup powdered milk (or powdered buttermilk)
    1 egg
    Mix dry ingredients in mixing bowl.
    Wait until oven is preheated (or at 450F) before continuing. Mix enough water into dry ingredients to get to a "pancake batter" consistency (thinner than waffles, but not runny). Add one egg and beat well (batter gets a little volume to it - use a hand mixer if your arms arent up to the job). Pour into the hot skillet, return to oven and bake about 10 -14 minutes (until browned on top and at the edges). If you poke the top, it should not be "jiggly", but firm.
    Remove from oven, let cool slightly in pan, then cut and serve. If taking somewhere else for dinner, leave in pan, wrap in towels to transport (cast iron will keep it hot for some time). Serve with lots of fresh butter, honey and a glass of cold buttermilk
    Notes:
    * I use home ground corn and sorghum, the flour as finely ground as I can make it. But, a coarser corn meal can be used or even masa -- you just get different textures in the resulting bread. Colored corn meals will result in differently colored breads - mine is yellow as I use popcorn most of the time, but you can use a white corn or even blue or red corn to get fun colors (especially good for layered salads).
    Corn flour can be ground with an electric mill (I use popcorn) or purchased at most Mexican markets.
    Use a finely ground corn meal (I grind my own, same consistency as a fine flour). You can use all cornmeal, but it can be a little coarse --cornstarch lightens the resulting bread.
    The above recipe is cooked in a small (6") cast iron skillet and makes 4 pieces (increase proportionately for a medium (8") or large (10") skillet -about 8 and 11 spoonfuls of flour, respectively and increase eggs by one for each increase in size)
    Triple everything for "big" pan (14"), do not multiply by 4, gets too thick, doesnt cook in center of bread.
    If you use real buttermilk instead of the powdered plus water -- try to get one without gums added, otherwise the batter is difficult to get to the right consistency. Regular milk could also be used. Havent tried this with any milk or egg substitutes, so dont know if it would work. I do know if you make it with masa flour and a gum thickened buttermilk, it gets a very "cakey" consistency.
    Additional Comments from "Mom":
    I dont really have a cornbread recipe as such. I combine both cornmeal and flour with dry powdered milk and enough water to make a batter about like pancakes, and then beat in an egg. I use a soup spoon to measure, For a medium sized skillet, I use about 5 very heaping spoonfuls of meal and 3 very heaping spoonfuls of flour (You could use all cornmeal). For my little skillet I use about 5 spoonfuls total and about 10 or 11 for the large skillet. You just have to play with it a little to see how thick you want your bread. It is hard to mess up. I used to use self-rising flour and meal so leavening was not a problem. Now I try to guess on the amount and add baking powder and salt. I usually add 1 rounded tsp baking powder and ¼ teaspoon salt to small skillet, 2 rounded tsp baking powder and ½ teaspoon salt to middle size, or 3 rounded tsp baking powder and ¾ teaspoon salt to large.
    I think the recommended amount is 1 ¼ teaspoon baking powder and ¼ tsp salt to 1 cup flour or meal. For the powdered milk, I just pour some in dry into the other dry ingredients. You could also use milk from a bottle, but it is harder for me to get it right. I probably add 1/3 cup to the middle size. I dont measure, so Im not sure. If you want to use butter milk, you need to add a little bit of baking soda to dry ingredients-- probably ½ teaspoon to middle-size. I think that buttermilk batters look thicker than they really are and are harder to make come out right. When I use buttermilk (from a bottle), I try to keep the batter a little thicker than normal. For the water, I slowly add running tap water until the thickness looks right.

    Silka Burgoyne
    As my husband's garden in full bloom, zucchini is popping up everywhere...so it's only appropriate for me to make good use of it and bake some zucchini bread!

    Makes one loaf.
    Preparation Time: 10 Minutes
    Cook Time: 50-65 Minutes
    Ingredients:
    1/2 stick of salted butter 1/4 cup of vegetable oil (optional) 3/4 cup of light brown sugar 1/4 cup of sugar 1 1/2 cup of "Silkie Flour Mix" (3/4 cup of  Brown Rice Flour, 1/4 cup white rice flour, 1/4 cup of Tapioca flour, 1/4 cup of corn starch and a little bit of potato starch) 2 eggs 1 1/4 tsp of xanthan gum 1 tsp of baking powder 1/2 tsp of baking soda 1 tsp of ground cinnamon 1/8 tsp of nutmeg 1/2 tsp of gluten free vanilla extract 1 1/2 cup of shredded zucchini 1/2 cup of chopped Walnut (optional) - with nuts version 1/2 cup of chocolate Chips (optional) - chocolate chips version 2 tbsp of light brown sugar for sprinkle on top (optional) Directions:

    Preheat oven to 350F degree, grease one 8 by 4 by 2-inch loaf with oil spray or line the pan with parchment paper. Use mixer, cream butter and sugars until fluffy With mixer running, add egg and vanilla extract to the mixture Whisk flour mix, baking powder, baking soda, salt, xanthan gum, nutmeg and cinnimon together and add the dry ingredient to the wet ingredient in the mixer If the dough appears too dry, add 1/4 of vegetable oil Fold zucchini and walnut (optional - for nut version) or chocolate chips (optional - chocolate chips version) into the batter Pour batter into the prepared pan, if desires, sprinkle a couple 2 tbsp brown sugar on top of the batter Bake for 55-65 mins until golden brown or skewer insert in the center comes out clean Let cool for 10 minutes before serve. Happy Baking!

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023