• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,473
    Total Members
    3,093
    Most Online
    hayley stan
    Newest Member
    hayley stan
    Joined
  • 0

    Dairy-Free, Gluten-Free & Vegan Cheesy Quinoa Stuffed Mushrooms


    Amie  Valpone
    Image Caption: Photo: CC--crd!

    Celiac.com 07/02/2013 - This wonderful stuffed mushroom recipe makes a perfect appetizer for that perfect dinner experience!


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    Makes 16 Mushrooms

    Photo: CC--crd!Ingredients:

    • 1/4 cup uncooked quinoa
    • 16 large button mushrooms
    • 2 tablespoons olive oil
    • 2 cloves garlic, minced
    • 2 tablespoons finely chopped pecans
    • 1 cup salsa
    • 1 cup Go Veggie! Vegan Cheddar Cheese Shreds
    • 2 Tbsp. Go Veggie! Vegan Parmesan, plus more for topping
    • 1 teaspoon sea salt
    • 2 Tbsp. finely chopped flat leaf fresh parsley

    Directions:

    1.   Preheat the oven to 350 degrees F. 
    2.   Cook quinoa according to package directions.
    3.   Remove stems from mushrooms and set aside.  Place mushrooms on a nonstick baking sheet. Bake for 15 minutes.
    4.   Meanwhile, chop mushroom stems into small pieces.  In a large skillet, heat oil and garlic with chopped mushroom stems over medium heat for 4 minutes or until garlic starts to brown.  Add pecans, salsa, Go Veggie Cheddar Cheese Shreds, Go Veggie Parmesan and sea salt; cook for 3 more minutes.  Add cooked quinoa and continue to cook, gently stirring for another 3 minutes. Remove from heat; transfer mixture to empty mushroom caps.  Top with parsley and bake for 10 minutes.
    5.   Remove from oven; transfer to a serving plate.  Serve warm with additional Parmesan cheese. Enjoy!
    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   7 Members, 0 Anonymous, 268 Guests (See full list)

  • Related Articles

    Amie  Valpone
    There is a variation on this tasty recipe using Rainbow Swiss chard and pine nuts on my Web site.

    Ingredients: 2 cups TruRoots gluten-free penne pasta 1 Tbsp. Barlean's coconut oil 1 large bundle Swiss chard 1 large bundle kale 1/3 cup walnuts, finely chopped 2 tsp. fresh lemon juice 1 tsp. fresh lemon zest 5 chives, finely chopped 1/4 tsp. sea salt 1/4 tsp. freshly ground white pepper Instructions: Cook pasta according to package directions. Meanwhile, wash Swiss chard and kale; cut into 1 inch pieces. Heat coconut oil in a large skillet over medium heat. Add Swiss chard; cook, tossing until tender, about 3 minutes. Remove from heat; drain off excess liquid. Add walnuts, lemon juice, lemon zest, chives, sea salt and pepper. Drain pasta; gently toss with kale mixture. Transfer to a serving bowl. Serve warm.

    Amie  Valpone
    There is nothing like the taste of fresh-roasted nuts during wintertime. This recipe will please all of the nut lovers out there!
    Ingredients: 1 cup pecans 1 cup macadamia nuts 1 cup cashews 1 tsp. ground cinnamon 1/4 tsp. all-spice 1 Tbsp. sugar 1/4 tsp. sea salt 1/4 tsp. pepper 2 Tbsp. Barlean's flax seeds 1 Tbsp. fresh orange zest Instructions: Preheat oven to 400 degrees F. Place all nuts on a cookie sheet and roast for 10 minutes. Meanwhile, in a small bowl, combine sugar with spices, flax seeds and orange zest; mix well to combine. Remove toasted nuts from the oven and transfer to a large mixing bowl. Drizzle with oil and spices; gently toss to combine. Transfer nuts to a serving dish and serve warm.

    Jefferson Adams
    Celiac.com 02/25/2014 - Winter is crab season on the west coast. I'm a crab cake lover from way back, but they nearly always contain wheat flour, so I generally avoid them since going gluten-free.
    This simple gluten-free version combines fresh crab with ginger, lime and a dash of hot sauce to deliver a light, flavorful crab cake.
    Ingredients:
    8 ounces fresh lump crab meat, cleaned and free of any shell pieces 4 small whole scallions, minced 2 tablespoons cilantro, minced 1 teaspoon freshly grated ginger root 1 teaspoon finely grated lime zest 1 teaspoon lime juice ½ to 1 teaspoon sriracha, or any hot sauce of choice, to taste 2 tablespoons mayonnaise 2 tablespoons of crushed Rice Chex for crab mixture ¾ cup of crushed Rice Chex for breading ½ cup tapioca flour 1 egg, beaten 2 tablespoons olive oil 1½ tablespoons butter Lime wedges for garnish Directions:
    In a medium bowl, combine the scallions, cilantro, ginger, lime zest, lime juice, and mayonnaise.
    Stir in the crab meat and the Chex to combine. Cover with plastic wrap and chill for 1 to 2 hours.
    Using clean hands, roll the crab mix into 1-inch balls.
    Set out three bowls. Put tapioca flour in one bowl, the beaten egg in the second, and the crushed Rice Chex in the last bowl.
    For each crab ball, roll first in tapioca, then dip in beaten egg, then coat thoroughly with crushed Rice Chex, and transfer to a plate.
    Heat the oil in a large, heavy-bottomed sauté pan on medium high heat. Whisk in the butter.
    Once the butter foams up and melts, place the Chex-coated crab balls into the pan and press down gently with a wooden spatula.
    It is important to keep the oil hot, so do not crowd the pan. Cook the cakes in small batches as needed.
    Cook each cake one to two minutes, until underside is golden brown, then gently turn the crab cakes over and cook until golden brown on the other side.
    Transfer cooked cakes to a paper towel.
    Serve with lime or lemon wedges and cocktail sauce or wasabi aioli:
    Wasabi Aioli:
    1 cup mayonnaise 2 tablespoons wasabi or prepared horseradish 2 tablespoons fresh lemon juice 2 teaspoons grated lemon zest â…› teaspoon freshly ground black pepper â…› teaspoon freshly ground ginger Mix ingredients in a bowl and serve with crabcakes.

    Jefferson Adams
    This easy-to-make recipe combines tomatoes, black beans, corn and spices to deliver a sure to please salsa that makes a welcome addition to any game day potluck or friendly gathering.
    Ingredients:
    2 cans (14-1/2 ounces each) diced tomatoes 2 large tomatoes, chopped 1 cups frozen corn, thawed 1 can (15 ounces) black beans, rinsed and drained 1 medium sweet onion, finely chopped ¼ cup lime juice ¼ cup fresh cilantro, minced 2 tablespoons cider vinegar 2 tablespoons gluten-free hot pepper sauce 1 garlic clove, minced 2 teaspoons ground cumin 2 teaspoons coriander seeds, crushed 1 teaspoon kosher salt 1 teaspoon coarsely ground pepper 1-2 jalapeño peppers, diced. optional Directions:
    Place an undrained can of tomatoes in a large bowl; drain the remaining can and add to the bowl.
    Stir in the chopped fresh tomatoes, corn, beans, onion, lime juice, cilantro, vinegar, pepper sauce, garlic and seasonings. Stir in jalapeño, as desired.
    Cover and refrigerate until serving. Serve with tortilla chips.

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023