Celiac.com Sponsor (A1):



Celiac.com Sponsor (A1-m):


  • You've found your Celiac Tribe! Join our like-minded, private community and share your story, get encouragement and connect with others.

    💬

    • Sign In
    • Sign Up
  • Jefferson Adams

    Researchers Use RNA-amplicon Sequencing to Spot Differences in Celiac Disease Epitopes in Durum Wheat Varieties

    Jefferson Adams
    0
    Reviewed and edited by a celiac disease expert.

      Numerous factors are known to influence the immunogenicity of individual gene family members, as alpha-gliadins are encoded by a large multi-gene family and amino acid variation in the celiac disease epitopes.


    Photo: CC--antonella_baccaria
    Caption: Photo: CC--antonella_baccaria

    Celiac.com 02/04/2014 - According to a new article by a team of researchers, not all gluten protein is created equal. That is, not all gluten proteins trigger an immune response in people with celiac disease.

    The research team included Elma M.J. Salentijn, Danny G. Esselink, Svetlana V. Goryunova, Ingrid M. van der Meer, Luud J.W.J. Gilissen, and Marinus J.M. Smulders. They are variously affiliated with the Plant Research International in Wageningen, The Netherlands, and the Vavilov Institute of General Genetics at the Russian Academy of Sciences in Moscow, Russia.



    Celiac.com Sponsor (A12):






    Celiac.com Sponsor (A12-m):




    Gluten proteins are the source of peptides that can trigger a T cell reaction in celiac disease patients, leading to inflammatory responses in the small intestine. Various peptides with three major T cell epitopes involved in celiac disease are derived from alpha-gliadin fraction of gluten. Numerous factors are known to influence the immunogenicity of individual gene family members, as alpha-gliadins are encoded by a large multi-gene family and amino acid variation in the celiac disease epitopes. That means that some wheat strains are more likely to trigger celiac disease, and other are less likely.

    Current commercial methods of gluten detection cannot tell the difference between immunogenic and non-immunogenic celiac epitope variants, and thus cannot accurately measure the overall celiac epitope load of a given wheat strain. Being able to tell the difference between what types of wheat have a lower likelihood to cause or trigger celiac disease is important to commercial wheat growers and producers.

    The team developed a 454 RNA-amplicon sequencing method for alpha-gliadin transcripts that includes the three major celiac disease epitopes and their variants. They used the method to screen 61 different durum wheat cultivars and accessions. They found a total of 304 unique alpha-gliadin transcripts, corresponding to a total of 171 ‘unique deduced protein fragments’ of alpha-gliadins.

    They used the numbers of these fragments obtained in each plant to calculate quantitative and quantitative differences between the celiac epitopes expressed in the endosperm of these wheat plants. A small number of wheat plants showed a lower ratios of celiac epitope-encoding alpha-gliadin transcripts, though none were entirely free of celiac epitopes.

    Dedicated 454 RNA-amplicon sequencing allows researchers to group wheat plants according to the genetic variation in alpha-gliadin transcripts, and to screen for plants which are potentially less likely to trigger or promote celiac disease.

    The alpha-gliadin sequence database the team constructed will provide an important reference in proteomics analysis regarding the immunogenic potential of mature wheat grains.

    Source: 

    0

    User Feedback

    Recommended Comments



    Join the conversation

    You are posting as a guest. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • About Me

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University, and has authored more than 2,500 articles on celiac disease. His coursework includes studies in science, scientific methodology, biology, anatomy, medicine, logic, and advanced research. He previously served as SF Health News Examiner for Examiner.com, and devised health and medical content for Sharecare.com. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of the book "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-m):




  • Related Articles

    Scott Adams
    Celiac.com 10/30/2006 - Triticum monococcum wheat is also known as Einkorn wheat and small spelt, but do not confuse it with common spelt which is not the same thing. Einkorn is the oldest and most primitive cultivated wheat, and recent studies have shown that it appears to lack gliadin toxicity and may be a safe wheat alternative for those with celiac disease. In the most recent study the researchers conclude that data show a lack of toxicity of triticum monococcum gliadin in an in vitro organ culture system, suggesting new dietary opportunities for celiac patients. If this is the case it appears that this grain is non-toxic to those with celiac disease...

    Jefferson Adams
    Celiac.com 05/08/2007 - One of the strategies for developing alternative therapies for treating celiac disease centers on the identification of antagonist peptides that might inhibit the abnormal immune response caused by gliadin peptides in celiac disease.
    A recent study published in the journal Pediatric Research indicates that a peptide that occurs naturally in durum wheat may protect against the effects of celiac disease by acting as an antagonist against gliadin peptides associated with abnormal immune response.
    The study was conducted by a team of Italian researchers made up of Drs. Marco Silano, Rita DiBenedetto, Antonello Trecca...

    Roy Jamron
    Celiac.com 02/10/2008 - Researchers have found a 10mer durum wheat peptide capable of shifting a Th1 gluten-intolerant T cell response to a Th2 gluten-tolerant T cell response in intestinal T cell cultures derived from celiac disease children and incubated with deamidated gliadin peptides.  Durum wheat peptides could potentially treat celiac disease by causing celiac disease associated T cells to react tolerantly to gluten.
    In the study, incubation of the T cell cultures with deamidated gliadin peptides resulted in a significant increase in T cell proliferation and interferon-gamma release.  Simultaneous exposure to duram wheat peptides totally a...