Jump to content



Celiac.com Sponsor (A1):



Celiac.com Sponsor (A1-m):


  • You've found your Celiac Tribe! Join our like-minded, private community and share your story, get encouragement and connect with others.

    💬

    • Sign In
    • Sign Up
  • Jefferson Adams
    Jefferson Adams

    What Can Genome-wide Pleiotropy Teach Us About Parkinson Disease and Autoimmune Disorders?

    Reviewed and edited by a celiac disease expert.
    What Can Genome-wide Pleiotropy Teach Us About Parkinson Disease and Autoimmune Disorders? - Photo: CC--Peter Shanks
    Caption: Photo: CC--Peter Shanks

    Celiac.com 08/01/2017 - Although autoimmune disorders are not widely associated with Parkinson disease, there is increasing evidence for a link between immunity and neurodegenerative disorders. Indeed, both innate and adaptive immunity have been implicated in neurodegenerative disorders.

    A team of researchers recently set out to examine the connection between immunity and neurodegenerative disorders.



    Celiac.com Sponsor (A12):






    Celiac.com Sponsor (A12-m):




    The research team included Nikolaus R. McFarland, MD, PhD; Karen N. McFarland, PhD; and Todd E. Golde, MD, PhD. They are variously associated with the Center for Movement Disorders and Neurorestoration, Department of Neurology, College of Medicine, University of Florida, Gainesville, the Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, the McKnight Brain Institute, University of Florida, Gainesville, and the Department of Neuroscience, College of Medicine, University of Florida, Gainesville.

    One of the more interesting examples the researchers examined is TREM2, a member of the immunoglobulin receptor superfamily that expresses itself in microglia and tissue macrophages, and which has gene variants associated increased Alzheimer ’s risk.

    They also took a look at other TREM2 variants that are linked to the development of polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, a dementia associated with bone cystic lesions.

    Another example with less clear biological significance is the reproducible genetic association between a single-nucleotide polymorphism (SNP) in the locus and type 1 diabetes.

    We are at the very beginning of a research effort to better understand the connection between immunity and neurodegenerative disorders. It may take a while, but the results of these efforts will likely help researchers design better diagnostic and treatment regimes.

    Source:



    User Feedback

    Recommended Comments

    There are no comments to display.



    Join the conversation

    You are posting as a guest. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • About Me

    Jefferson Adams

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University, and has authored more than 2,500 articles on celiac disease. His coursework includes studies in science, scientific methodology, biology, anatomy, medicine, logic, and advanced research. He previously served as SF Health News Examiner for Examiner.com, and devised health and medical content for Sharecare.com. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of the book "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-m):




  • Related Articles

    Jefferson Adams
    Celiac.com 09/29/2014 - Can a gluten-free diet lead to dramatic improvement of Parkinsonian symptoms in patients with celiac disease?
    In the January issue of the the Journal of Neurology, researchers Vincenzo Di Lazzaro, Fioravante Capone, Giovanni Cammarota, Daniela Di Giuda, and Federico Ranieri report on the case of a man who saw a dramatic improvement of Parkinsonian symptoms after gluten-free diet.
    The researchers are affiliated with the Department of Neurosciences at the Institute of Neurology, Campus Bio-Medico University in Rome, Italy.
    This case is interesting because it supports a growing body of research that indicates that, in some cases, gluten toxicity might adversely impact the nervous system, producing symptoms identical to classical Parkinson’s disease.
    The man in question was a 75-year-old Parkinson’s disease patient with silent celiac disease saw major improvements in his symptoms after a 3-month long gluten-free diet.
    Noting the positive results in this patient, and the fact that celiac disease often manifests with only neurological symptoms, even in older patients, the researchers are calling for a deeper exploration to determine if there are higher rates of celiac disease in people afflicted with Parkinson’s disease, or the related multi-factorial neurodegenerative condition known as Parkinsonism.
    Source:
     J Neurol. 2014 Feb;261(2):443-5. doi: 10.1007/s00415-014-7245-7. Epub 2014 Jan 25.


    Jefferson Adams
    Celiac.com 12/28/2015 - Immune-mediated cerebellar ataxias include gluten ataxia, paraneoplastic cerebellar degeneration, GAD antibody associated cerebellar ataxia, and Hashimoto's encephalopathy.
    Despite the identification of an increasing number of immune-mediated cerebellar ataxias, there is no proposed standardized therapy.
    Recently, a research team set out to develop guidelines for treatment of immune-mediated cerebellar ataxias.
    The research team included H. Mitoma, M. Hadjivassiliou, and J. Honnorat. They are variously associated with the Department of Medical Education at Tokyo Medical University in Tokyo, Japan; the Academic Department of Neurosciences at Royal Hallamshire Hospital, Sheffield, UK; the University Lyon 1; INSERM, UMR-S1028, CNRS, UMR-5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team, 7; and the National Reference Centre for Paraneoplastic Neurological Diseases, Hospices Civils de Lyon, Hôpital neurologique in Bron, France.
    For their study, the team evaluated the efficacies of immunotherapies in reported cases using a common scale of daily activity.
    Their resulting analysis focuses on the importance of removing autoimmune triggers (e.g., gluten or cancer), evaluating immunotherapy (e.g., corticosteroids, intravenous immunoglobulin, immunosuppressants), and adjusting according to each sub-type.
    Source:
    Cerebellum Ataxias. 2015 Nov 10;2:14. doi: 10.1186/s40673-015-0034-y. eCollection 2015.


    Jefferson Adams
    Celiac.com 05/16/2016 - A number of epidemiological and clinical studies suggest a connection between inflammation and Alzheimer disease, their relationship is not well understood and may have implications for treatment and prevention strategies.
    A research team recently set out to figure out if a subset of genes involved with increased risk of inflammation are also associated with increased risk for Alzheimer disease. The research team included JS Yokoyama, Y Wang, AJ Schork, WK Thompson, CM Karch, C Cruchaga, LK McEvoy, A Witoelar, CH Chen, D Holland, JB Brewer, A Franke, WP Dillon, DM Wilson, P Mukherjee, CP Hess, Z Miller, LW Bonham, J Shen, GD Rabinovici, HJ Rosen, BL Miller, BT Hyman, GD Schellenberg, TH Karlsen, OA Andreassen, AM Dale, RS Desikan; and the Alzheimer’s Disease Neuroimaging Initiative.
    They are variously affiliated with the Departments of Neurosciences, Cognitive Sciences, Psychiatry, and Radiology at the University of California, San Diego, La Jolla, the Departments of Neurology, Radiology and Biomedical Imaging at the University of California, San Francisco, the Department of Psychiatry, Washington University, St Louis, Missouri, the Division of Mental Health and Addiction, Oslo University Hospital, the Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, the Division of Gastroenterology, and the Norwegian PSC Research Center and KG Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation at Oslo University Hospital Rikshospitalet, Oslo, Norway, the Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany, the Department of Neurology, Massachusetts General Hospital, Boston, and the Department of Pathology and Laboratory Medicine at the University of Pennsylvania Perelman School of Medicine, Philadelphia.
    Using data from numerous genome-wide association studies from several clinical research centers, the team conducted a genetic epidemiology study in July 2015, in which they systematically investigated genetic overlap between Alzheimer disease (International Genomics of Alzheimer's Project stage 1) and Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis.
    The team assessed P values and odds ratios from genome-wide association studies of more than 100, 000 individuals from previous comparisons of patients vs respective control groups. They used consensus criteria to confirm diagnosis for each disorder previously made in the parent study. The main outcome was the pleiotropic (conjunction) false discovery rate P value.
    Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer's Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer's Disease Neuroimaging Initiative); and gene expression in Alzheimer disease vs control brains (Gene Expression Omnibus data).
    These findings confirm genetic overlap between Alzheimer disease and immune-mediated diseases, and suggest that immune system processes influence Alzheimer disease pathogenesis and progression.
    For more detail, and exact data results, see JAMA Neurol. 2016 Apr 18. doi: 10.1001/jamaneurol.2016.0150.


    Jefferson Adams
    Celiac.com 01/16/2017 - Cerebellar ataxias can be caused by a wide range of disease processes, either genetic or acquired. Establishing a clear diagnosis requires a methodical approach with expert clinical evaluation and investigation.
    A team of researchers recently published a description of the causes of ataxia in 1500 patients with cerebellar ataxia.  The research team included M Hadjivassiliou, J Martindale, P Shanmugarajah, R A Grünewald, P G Sarrigiannis, N Beauchamp, K Garrard, R Warburton, D S Sanders, D Friend, S Duty, J Taylor, and N Hoggard.
    They are variously affiliated with the Academic Department of Neurosciences, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK; the Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; and the Department of Neuroradiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK.
    All patients in the study were referred to the Sheffield Ataxia Centre, UK, and underwent extensive examination, including, where appropriate genetic testing using next-generation sequencing (NGS).
    The team followed-up patients on a 6-month basis for reassessment and further investigations, as needed.
    The team assessed a total of 1500 patients over 20 years. Twenty per cent of those patients had a family history of ataxia, with the remaining having sporadic ataxia.
    The most common cause of sporadic ataxia was gluten ataxia at 25%. They found a genetic cause in 156, or 13% of sporadic cases, with alcohol excess causing 12% and a cerebellar variant of multiple system atrophy causing 11% of sporadic cases.
    Using NGS, they obtained positive results in 32% of 146 patients tested. The most common ataxia they found was EA2. A total of 57% of all familial ataxias were supported by genetic diagnosis. The most common genetic ataxias were Friedreich's ataxia (22%), SCA6 (14%), EA2 (13%), SPG7 (10%) and mitochondrial disease (10%).
    The diagnostic yield following attendance at the Sheffield Ataxia Centre was 63%. Immune-mediated ataxias are common. Advances in genetic testing have significantly improved the diagnostic yield of patients suspected of having a genetic ataxia.
    Making a diagnosis of the cause of ataxia is essential due to potential therapeutic interventions for immune and some genetic ataxias.
    Gluten is a culprit is 25% of sporadic ataxia cases, and clinicians should keep this in mind when diagnosing patients, as many of these cases can be reversed with a gluten-free diet.
    Source:
    J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2016-314863


  • Popular Now

×
×
  • Create New...