Jump to content
Celiac Disease FAQ | This site uses cookies GDPR notice. Read more... ×
  • Sign Up

Search the Community

Showing results for tags 'strain'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Celiac Disease & Gluten-Free Diet Forums

  • Diagnosis & Recovery, Related Disorders & Research
    • Calendar of Events
    • Celiac Disease Pre-Diagnosis, Testing & Symptoms
    • Post Diagnosis, Recovery & Treatment of Celiac Disease
    • Related Disorders & Celiac Research
    • Dermatitis Herpetiformis
    • Gluten Sensitivity and Behavior
  • Support & Help
    • Coping with Celiac Disease
    • Publications & Publicity
    • Parents' Corner
    • Gab/Chat Room
    • Doctors Treating Celiac Disease
    • Teenagers & Young Adults Only
    • Pregnancy
    • Friends and Loved Ones of Celiacs
    • Meeting Room
    • Celiac Disease & Sleep
    • Celiac Support Groups
  • Gluten-Free Lifestyle
    • Gluten-Free Foods, Products, Shopping & Medications
    • Gluten-Free Recipes & Cooking Tips
    • Gluten-Free Restaurants
    • Ingredients & Food Labeling Issues
    • Traveling with Celiac Disease
    • Weight Issues & Celiac Disease
    • International Room (Outside USA)
    • Sports and Fitness
  • When A Gluten-Free Diet Just Isn't Enough
    • Food Intolerance & Leaky Gut
    • Super Sensitive People
    • Alternative Diets
  • Forum Technical Assistance
    • Board/Forum Technical Help
  • DFW/Central Texas Celiacs's Events
  • DFW/Central Texas Celiacs's Groups/Organizations in the DFW area

Calendars

  • Gluten-Free Community Calendar

Celiac Disease & Gluten-Free Diet Blogs

There are no results to display.

There are no results to display.

Categories

  • Celiac.com Sponsors
  • Celiac Disease
  • Safe Gluten-Free Food List / Unsafe Foods & Ingredients
  • Gluten-Free Food & Product Reviews
  • Gluten-Free Recipes
    • American & International Foods
    • Gluten-Free Recipes: Biscuits, Rolls & Buns
    • Gluten-Free Recipes: Noodles & Dumplings
    • Gluten-Free Dessert Recipes: Pastries, Cakes, Cookies, etc.
    • Gluten-Free Bread Recipes
    • Gluten-Free Flour Mixes
    • Gluten-Free Kids Recipes
    • Gluten-Free Recipes: Snacks & Appetizers
    • Gluten-Free Muffin Recipes
    • Gluten-Free Pancake Recipes
    • Gluten-Free Pizza Recipes
    • Gluten-Free Recipes: Soups, Sauces, Dressings & Chowders
    • Gluten-Free Recipes: Cooking Tips
    • Gluten-Free Scone Recipes
    • Gluten-Free Waffle Recipes
  • Celiac Disease Diagnosis, Testing & Treatment
  • Celiac Disease & Gluten Intolerance Research
  • Miscellaneous Information on Celiac Disease
    • Additional Celiac Disease Concerns
    • Celiac Disease Research Projects, Fundraising, Epidemiology, Etc.
    • Conferences, Publicity, Pregnancy, Church, Bread Machines, Distillation & Beer
    • Gluten-Free Diet, Celiac Disease & Codex Alimentarius Wheat Starch
    • Gluten-Free Food Ingredient Labeling Regulations
    • Celiac.com Podcast Edition
  • Journal of Gluten Sensitivity
    • Spring 2019 Issue
    • Winter 2019 Issue
    • Autumn 2018 Issue
    • Summer 2018 Issue
    • Spring 2018 Issue
    • Winter 2018 Issue
    • Autumn 2017 Issue
    • Summer 2017 Issue
    • Spring 2017 Issue
    • Winter 2017 Issue
    • Autumn 2016 Issue
    • Summer 2016 Issue
    • Spring 2016 Issue
    • Winter 2016 Issue
    • Autumn 2015 Issue
    • Summer 2015 Issue
    • Spring 2015 Issue
    • Winter 2015 Issue
    • Autumn 2014 Issue
    • Summer 2014 Issue
    • Spring 2014 Issue
    • Winter 2014 Issue
    • Autumn 2013 Issue
    • Summer 2013 Issue
    • Spring 2013 Issue
    • Winter 2013 Issue
    • Autumn 2012 Issue
    • Summer 2012 Issue
    • Spring 2012 Issue
    • Winter 2012 Issue
    • Autumn 2011 Issue
    • Summer 2011 Issue
    • Spring 2011 Issue
    • Spring 2006 Issue
    • Summer 2005 Issue
  • Celiac Disease & Related Diseases and Disorders
    • Lists of Diseases and Disorders Associated with Celiac Disease
    • Addison's Disease and Celiac Disease
    • Anemia and Celiac Disease
    • Anorexia Nervosa, Bulimia and Celiac Disease
    • Arthritis and Celiac Disease
    • Asthma and Celiac Disease
    • Ataxia, Nerve Disease, Neuropathy, Brain Damage and Celiac Disease
    • Attention Deficit Disorder and Celiac Disease
    • Autism and Celiac Disease
    • Bacterial Overgrowth and Celiac Disease
    • Cancer, Lymphoma and Celiac Disease
    • Candida Albicans and Celiac Disease
    • Canker Sores (Aphthous Stomatitis) & Celiac Disease
    • Casein / Cows Milk Intolerance and Celiac Disease
    • Chronic Fatigue Syndrome and Celiac Disease
    • Cognitive Impairment and Celiac Disease
    • Crohn's Disease and Celiac Disease
    • Depression and Celiac Disease
    • Dermatitis Herpetiformis: Skin Condition Associated with Celiac Disease
    • Diabetes and Celiac Disease
    • Down Syndrome and Celiac Disease
    • Dyspepsia, Acid Reflux and Celiac Disease
    • Epilepsy and Celiac Disease
    • Eye Problems, Cataract and Celiac Disease
    • Fertility, Pregnancy, Miscarriage and Celiac Disease
    • Fibromyalgia and Celiac Disease
    • Flatulence (Gas) and Celiac Disease
    • Gall Bladder Disease and Celiac Disease
    • Gastrointestinal Bleeding and Celiac Disease
    • Geographic Tongue (Glossitis) and Celiac Disease
    • Growth Hormone Deficiency and Celiac Disease
    • Heart Failure and Celiac Disease
    • Infertility, Impotency and Celiac Disease
    • Inflammatory Bowel Disease and Celiac Disease
    • Intestinal Permeability and Celiac Disease
    • Irritable Bowel Syndrome and Celiac Disease
    • Kidney Disease and Celiac Disease
    • Liver Disease and Celiac Disease
    • Lupus and Celiac Disease
    • Malnutrition, Body Mass Index and Celiac Disease
    • Migraine Headaches and Celiac Disease
    • Multiple Sclerosis and Celiac Disease
    • Myasthenia Gravis Celiac Disease
    • Obesity, Overweight & Celiac Disease
    • Osteoporosis, Osteomalacia, Bone Density and Celiac Disease
    • Psoriasis and Celiac Disease
    • Refractory Celiac Disease & Collagenous Sprue
    • Sarcoidosis and Celiac Disease
    • Scleroderma and Celiac Disease
    • Schizophrenia / Mental Problems and Celiac Disease
    • Sepsis and Celiac Disease
    • Sjogrens Syndrome and Celiac Disease
    • Skin Problems and Celiac Disease
    • Sleep Disorders and Celiac Disease
    • Thrombocytopenic Purpura and Celiac Disease
    • Thyroid & Pancreatic Disorders and Celiac Disease
    • Tuberculosis and Celiac Disease
  • The Origins of Celiac Disease
  • Gluten-Free Grains and Flours
  • Oats and Celiac Disease: Are They Gluten-Free?
  • Frequently Asked Questions
  • Celiac Disease Support Groups
    • United States of America: Celiac Disease Support Groups and Organizations
    • Outside the USA: Celiac Disease Support Groups and Contacts
  • Celiac Disease Doctor Listing
  • Kids and Celiac Disease
  • Gluten-Free Travel
  • Gluten-Free Cooking
  • Gluten-Free
  • Allergy vs. Intolerance
  • Tax Deductions for Gluten-Free Food
  • Gluten-Free Newsletters & Magazines
  • Gluten-Free & Celiac Disease Links
  • History of Celiac.com
    • History of Celiac.com Updates Through October 2007
    • Your E-mail in Support of Celiac.com 1996 to 2006

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Interests


Location

Found 4 results

  1. Celiac.com 05/20/2017 - Anyone eager to try Whurple, the purple strain of gluten-free wheat reported by the State Collegian, will have to wait quite a while. It seems that the Collegian's report of the development by a Kansas State agriculture student was, in fact, merely a thinly disguised April Fool's Day joke. The Collegian had reported that such a product had been developed by one "Hayden Field, senior in agronomy," as part of his "four-year undergraduate research project in wheat development." Aside from the note at the bottom of the article indicating the joke, a major clue can be found in the article itself, which states that the wheat strain, which Field named "Whurple," was "genetically modified to have the "Willie gene," which means the wheat will be resistant to the colors crimson and blue. And when cooked at a temperature of 1,868 F, the wheat will turn purple." Obviously, far from changing color, any grain that is cooked at nearly 2,000 degrees Fahrenheit will almost certainly turn to ash. So, if you've been eagerly anticipating the glorious arrival of purple gluten-free wheat from Kansas, well, April Fools. Read the original article in the KStateCollegian.com.
  2. Celiac.com 12/29/2016 - Researchers have documented a reduction of gastrointestinal symptoms in untreated celiac disease patients after oral administration of Bifidobacterium infantis Natren Life Start super strain (NLS-SS). The reduction of symptoms was not connected with and changes in intestinal permeability or serum levels of cytokines, chemokines, or growth factors. That led the team to hypothesize that the benefits observed in celiac patients treated with B. infantis may be connected to the modulation of innate immunity. A team of researchers recently set out to investigate the potential mechanisms of a probiotic B. infantis Natren Life Start super strain on the mucosal expression of innate immune markers in adult patients with active untreated celiac disease compared with those treated with B. infantis 6 weeks and after 1 year of gluten-free diet. The research team included Maria I. Pinto-Sanchez, MD, Edgardo C. Smecuol, MD, Maria P. Temprano, RD, Emilia Sugai, BSBC, Andrea Gonzalez, RD, PhD, Maria L. Moreno, MD, Xianxi Huang, MD, PhD, Premysl Bercik, MD, Ana Cabanne, MD, Horacio Vazquez, MD, Sonia Niveloni, MD, Roberto Mazure, MD, Eduardo Maurino, MD, Elena F. Verdu´, MD, PhD, and Julio C. Bai, MD. They are variously affiliated with the Medicine Department, Farcombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada; Small Intestinal Section, Department of Medicine; Department of Alimentation, Dr. C. Bonorino Udaondo Gastroenterology Hospital and Research Institute at the Universidad del Salvador in Buenos Aires, Argentina. They first used immunohistochemistry to assess the numbers of macrophages and Paneth cells, and the expression a-defensin-5 in duodenal biopsies. They found that a gluten-free diet reduces duodenal macrophage counts in celiac patients more effectively than B. infantis. In contrast, B. infantis decreases Paneth cell counts and expression of a-defensin-5 in celiac disease (P< 0.001). The results identify differential innate immune effects of treatment with B. infantis compared with 1 year of gluten-free diet. The team is calling for further study to determine synergistic effects of gluten-free diet and B. infantis supplements in celiac disease. Source: salvador.academia.edu
  3. Celiac.com 08/08/2016 - Celiac-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which celiac-associated dysbiosis could concur to celiac disease development or exacerbation are unknown. To clarify the situation, a research team recently analyzed the duodenal microbiome of celiac patients. The research team included V D'Argenio, G Casaburi, V Precone, C Pagliuca, R Colicchio, D Sarnataro, V Discepolo, SM Kim, I Russo, G Del Vecchio Blanco, DS Horner, M Chiara, G Pesole, P Salvatore, G Monteleone, C Ciacci, GJ Caporaso, B Jabrì, F Salvatore, and L Sacchetti. They are variously affiliated with CEINGE-Biotecnologie Avanzate, Naples, Italy, the Department of Molecular Medicine and Medical Biotechnologies and the Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases at the University of Naples Federico II, Naples, Italy, the Department of Medicine and the University of Chicago Celiac Disease Center, University of Chicago, Chicago, Illinois, USA, the Department of Medicine and Surgery, University of Salerno, Salerno, Italy, the Department of System Medicine, University of Rome Tor Vergata, Rome, Italy, the Department of Biosciences, University of Milan, Milan, Italy, the Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy, the Department of Biochemistry and Molecular Biology, University of Bari A. Moro, Bari, Italy, the Northern Arizona University, Flagstaff, Arizona, USA, the IRCCS-Fondazione SDN, Naples, Italy. The team used DNA sequencing of 16S ribosomal RNA libraries to assess duodenal biopsy samples from 20 adult patients with active celiac disease, 6 celiac disease patients on a gluten-free diet, and 15 control subjects. They cultured, isolated and identified bacterial species by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). They used immunofluorescence and ELISA to assess inflammatory markers and cytokines. Their findings showed that proteobacteria was the most abundant, and Firmicutes and Actinobacteria the least abundant, phyla in patients with active celiac disease. In patients with active celiac disease, bacteria of the Neisseria genus (Betaproteobacteria class) were substantially more abundant than it was in either of the other groups (P=0.03), with Neisseria flavescens being most prominent Neisseria species. Whole-genome sequencing of celiac disease-associated Neisseria flavescens and control-Nf showed genetic diversity of the iron acquisition systems, and of some hemoglobin-related genes. Neisseria flavescens was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants. Marked dysbiosis and the pronounced presence of a peculiar strain characterize the duodenal microbiome in active celiac disease patients. This suggests that celiac-associated Neisseria flavescens could contribute to the many inflammatory signals in celiac disease. Source: Am J Gastroenterol. 2016 Jun;111(6):879-90. doi: 10.1038/ajg.2016.95. Epub 2016 Apr 5.
  4. Celiac.com 03/13/2013 - To determine if the probiotic Bifidobacterium natren life start (NLS) strain might affect the treatment and clinical features of patients with untreated celiac disease, a team of researchers recently conducted an exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start super strain in active celiac disease. The research team included E. Smecuol, H.J. Hwang, E. Sugai, L. Corso, A.C. Cherñavsky, F.P. Bellavite, A. González, F. Vodánovich, M.L. Moreno, H. Vázquez, G. Lozano, S.Niveloni, R. Mazure, J. Meddings, E. Mauriño, and J.C. Bai. They are variously affiliated with the Small Intestinal Section of the Department of Medicine in the Department of Alimentation at the Hospital de Gastroenterología "Dr. C. Bonorino Udaondo," the Department of Immunogenetics of the Hospital de Clínicas "José de San Martín" at the Universidad de Buenos Aires, the Consejo de Investigación en Salud, Ministerio de Salud in Ciudad de Buenos Aires, the Department of Gastroenterology at the Universidad del Salvador in Buenos Aires, Argentina, and the Gastrointestinal Research Group at the University of Calgary in Calgary, Alberta, Canada. For their study, the team enrolled 22 adult patients with two positive celiac disease-specific tests. Over a three week period, patients randomly received two capsules of either Bifidobacterium infantis natren life start strain super strain (Lifestart 2) (2×10 colony-forming units per capsule). All patients consumed at least 12 g of gluten per day for the duration of the test. In all, twelve patients received the bifidobacterium, while ten received the placebo. At the end of the trial, the team used biopsy to confirm celiac disease in all patients. The primary factor being measured was changes to intestinal permeability. The secondary factor was changes in symptoms and the Gastrointestinal Symptom Rating Scale, and in immunologic indicators of inflammation. Neither treatment caused significant changes in abnormal baseline intestinal permeability. In contrast to patients receiving the placebo, patients who received B. infantis experienced significant improvements as measured by the Gastrointestinal Symptom Rating Scale (P=0.0035 for indigestion; P=0.0483 for constipation; P=0.0586 for reflux). The administration of B. infantis was completely safe. Patients who received B. infantis showed lower ratios of IgA tTG and IgA DGP antibody (P=0.055 for IgA tTG and P=0.181 for IgA DGP). Patients who received B. infantis also had significantly higher levels of serum macrophage inflammatory protein-1β (P<0.04). The results indicate that B. infantis may alleviate symptoms in untreated celiac disease. The probiotic produced some immunologic changes, but did not change abnormal intestinal permeability. The researchers call for further study to confirm and/or expand these results. Source: J Clin Gastroenterol. 2013 Feb;47(2):139-47. doi: 10.1097/MCG.0b013e31827759ac.
×