Celiac.com Sponsor (A1):



Celiac.com Sponsor (A1-m):


  • Join Our Community!

    Ask us a question in our celiac / gluten-free forum.

  • Dr. Ron Hoggan, Ed.D.

    Type 1 Diabetes - A Case Study Supporting Integration of Existing Hypotheses

    Dr. Ron Hoggan, Ed.D.
    0
    Reviewed and edited by a celiac disease expert.

      Journal of Gluten Sensitivity Autumn 2013 Issue


    Image: CC--Jill Brown
    Caption: Image: CC--Jill Brown

    Celiac.com 01/24/2017 - Diabetes is a condition in which blood glucose rises high enough to cause: damage to blood vessel walls, neurological injury, vision loss, and a host of other maladies. Most currently recognized cases of diabetes fall into one of two categories which are identified as type 1 and type 2 diabetes. While these two types of diabetes share many symptoms, the underlying causes are, in most cases, quite distinct, although there is also some overlap which will be explored shortly. There are also cases of gestational diabetes and some researchers are now suggesting that type 3 diabetes may be yet another entity that causes accelerating cell death in the brain, resulting dementia (1) but these latter two types of this condition are not included in the current discussion.

    All but one of these forms of diabetes involves cellular resistance to the action of insulin, although there is some gray area between type 1 and type 2 diabetes. Type 1 diabetes is the result of an autoimmune attack on a specific group of pancreatic cells called islets of Langerhans. These are the cells that produce insulin, a hormone that moves glucose out of the bloodstream and into various cells. About 14% of type 2 diabetics are also thought to experience a late-onset, slowly developing damage to pancreatic islet cells, which results in reduced insulin production in combination with their insulin resistance(2). This may be caused by autoimmunity, similar to type 1 diabetes, or it may be damage induced by other factors. Nonetheless, while type 2 diabetes can often be controlled either during weight loss or by reduced carbohydrate consumption alone, type 1 diabetes is not typically viewed as a condition that can be remedied by a change in eating habits. Yet there are some hints in the literature suggesting that dietary interventions may be therapeutically useful, especially if begun early enough in the disease process.



    Celiac.com Sponsor (A12):






    Celiac.com Sponsor (A12-m):




    Researchers Amanda MacFarlane and Fraser Scott report that there are several environmental factors, including specific foods, as well as viral, bacterial, and chemical agents that have been hypothesized to incite an autoimmune attack on the islet cells (2). They also report that about half of the animals that develop type 1 diabetes are mounting an immune response to wheat, which may also be involved in the attack on the insulin producing cells of the pancreas by either or both of two pathways they outline (2, 3). These hypothesized biological processes are identified as molecular mimicry or bystander activation and cell death. While these authors favor bystander activation, either or both of these pathways may lead to an autoimmune attack on pancreatic islet cells. Regardless of the specific biological route, type 1 diabetes can be induced in a significant portion of genetically susceptible rats and mice, simply by feeding them a diet dominated by wheat gluten. Further, the severity of their disease varies directly with the proportion of wheat gluten in the diet (2). These investigators go on to say that "These similarities between coeliac disease in humans and diabetes in BB rats, NOD mice and type 1 diabetic patients are consistent with the idea that wheat is involved in diabetes pathogenesis, possibly by inducing a subclinical, gut inflammation in many individuals that develop this form of diabetes" (2).

    They go on to report that: "Our data suggest that dietary modulation has effects at two (or more) levels:
    At the target cells before classic insulitis, changing the growth pattern of insulin-producing cells, enhancing islet mass and changing metabolism and insulin reserves . Dampening an ongoing inflammatory condition in the gut." (2)

    Scott's work (4, 5) along with investigations conducted by several groups of his colleagues (6-10) indicate that significant numbers of diabetes patients show immune reactions to the prolamins which are storage proteins in wheat, rye, and barley. Further, investigators have long understood that there is significant overlap between celiac disease and type 1 diabetes, with estimates ranging between 5% and 12% in each disease group (2, 11). MacFarlane and Scott point out that 33% to 40% of patients with type 1 diabetes show transglutaminase autoantibodies which are similar to those found in celiac patients but usually at lower levels (2).

    Low concordance rates in monozygotic (identical) twins also suggest that environmental factors play a large role in causing type 1 diabetes (2). Again, the most compelling evidence indicates that dietary consumption of wheat gluten and similar prolamins is an important factor in the autoimmune attack that destroys the pancreatic capacity to produce insulin, in genetically susceptible individuals.

    Indirect support for this perspective is offered by animal research published in July of 2011. It shows that gamma-Aminobutryic acid (GABA) supplements not only inhibit the autoimmune attack on islet cells, GABA also incites regeneration of insulin producing cells (12). GABA is a non-toxic substance that is produced by the beta cells of the pancreas (13). It plays an inhibitory role throughout the nervous system which may be significant when taken in conjunction with Rodney Ford's identification of gluten as the agent which, directly and indirectly, induces neurological damage in those with celiac disease and those with non-celiac gluten sensitivity. One pathway Ford identifies is gluten-induced neuronal excitation leading to cellular self-destruction. In light of Ford's hypothesis, the inhibitory role of GABA on neuronal tissues, both at and near synapses, offers an inviting new window for envisioning the process that incites, and therefore may reverse, type 1 diabetes.

    Clearly there is considerable cause to suspect gluten grain consumption as an important factor in the onset and perpetuation of many cases of type 1 diabetes. While genetically coded HLA markers predispose to the disease, and a number of other environmental factors may play a role in its pathogenesis, prolamins from wheat and its close relatives are clearly a frequent and important contributor to this life-long condition in which exogenous insulin (injection with hypodermic needles) is necessary for maintaining optimal health (12) while living with this malady. However, given the insights offered by the above, the following case history may offer insights that might otherwise incite only scepticism. MacFarlane and Scott suggest the following: "One approach to achieving this [prevention] is to understand and modify the environmental factors that induce disease or equip those at risk with better means of avoiding or handling these agents"(2).

    Case Study:
    On January 18, 2008, three year old K and her anxious mother were taken to a hospital emergency department in Gilbert, AZ, where the attending physician concluded that the child had experienced a febrile seizure of about 5 minutes' duration. At examination, she had a 102.5 degree temperature. In addition to fevers, K complained of abdominal pain and showed abdominal bloating. During this examination of K, she vomited. Laboratory tests showed elevated glucose (133 mg/dl) and an elevated white blood cell count (19,000). Tylenol was used to bring K's temperature down and she was discharged with instructions for the parents to administer more Tylenol as needed, and to follow up with her regular health care provider within two days.

    By February 29, K experienced more fevers, ranging between 101 and 104, intermittently over 24 hours. Every four hours, when the effects of the previous dose of Tylenol wore off, the fever would, again, spike to 103-104. K was taken to see her regular physician the following day and urinalysis revealed ketone bodies. K and her parents were then sent to the emergency department of Banner Children's Hospital.

    At the hospital, testing showed elevated urinary ketone bodies in the Large category, and blood showed elevated glucose at 193 mg/dL. Type 1 diabetes was diagnosed and K was admitted to hospital where she stayed for four days. Her condition was stabilized with ½ unit of Novalog and 4 units of Lantus. Meanwhile parents were educated about type 1 diabetes, insulin measurement and injection. They were taught to inject 1 unit of insulin for every 20 grams of carbohydrates consumed (20:1 ratio). K's parents repeatedly wondered, in the presence of the diagnosing endocrinologist, just how much insulin K was producing and how many carbohydrates a thirty pound child needed to be healthy? *

    K's father has a history of joint pain when consuming gluten grains. K was still experiencing abdominal bloating and because of the overlap between type 1 diabetes and celiac disease (2) serum IgA antibody tests were undertaken and both transglutaminase and gliadin antibody tests were negative. However, the parents observed that variations in the types of food K ate seemed to have a greater impact on blood glucose than a specific food's putative sugar content.

    In keeping with their observations that different foods, despite their equal sugar content, produced different blood glucose results, the father's history of joint pain when eating gluten, K's abdominal bloating, and the widely documented connection between gluten grains and type 1 diabetes, these foods and several others were eliminated from her diet.

    K's parents were quickly able to adjust the insulin therapy to a 40:1 ratio while K typically maintained a blood glucose range of between 80 and 95 mg/dl, which is well within the reference range for a healthy, non-diabetic person. In fact, this is a far narrower range than is prescribed by the American Diabetes Association which is 70-120 mg/dl for diabetic patients. K's family continued to target and achieve the 80-95 mg/dl range.

    After a few months of lower than normal blood sugars, still on insulin therapy, with the carbohydrate ratio now 40/1, the parents sought permission from the endocrinologist to take K off insulin completely, on the condition that her blood sugar continued within the normal range of 85-95 mg/dl. This was monitored on a daily basis. The first 24 hours were a success and another day was granted.
    After six months of following a strict and intense food therapy diet for K, the family started reintroducing foods. Some foods were reintroduced without a rise in blood sugar. She was also able to eat a larger amount of carbohydrate each meal with the same blood sugar control. Clearly, the pancreas was producing increasing quantities of insulin.

    On August 21, 2008, six months into this intensive and individualized food therapy, the patient's blood test results indicated a regeneration of the pancreas and a complete reversal of her type 1 diabetes. Her A1C was 4.8, well within the normal range for a non-diabetic person.

    Today, more than three years later, the patient is still insulin free and is using food therapy alone to maintain healthy and normal glucose control. Signs of pancreatic inflammation were also absent. Each of these findings echo MacFarlane and Scott on the issue of dietary intervention in animal studies.

    The intensive food therapy has now been replaced with a maintenance program. The variety of foods the patient can eat is vast. However, grain and casein continue to be avoided. It appears that, in this case, these foods may have contributed to K's Type 1 diabetes. It may also be that the underlying cause of the fever K experienced early in this process was a factor in the onset of her type 1diabetes, and the transient nature of this fever, and its cause, may be at the root of her recovery from this ailment. Nonetheless, given the many converging research findings indicting grains and dairy proteins, along with K's suggestive signs and symptoms, and her father's reactions to gluten, continued avoidance of these foods seems a more likely explanation.

    Thoughtful readers may also wonder just how much insulin K was producing, at the time of her diagnosis, and just how many carbohydrates a thirty pound child needs to be healthy? It may be that GABA supplements and other chemical miracles will be unnecessary for large numbers of children who suffer from type 1 diabetes. Perhaps early diagnosis and permanent dietary adjustments will be what is needed to facilitate complete recovery for many, perhaps most, children afflicted by this insidious condition. Perhaps this case history will provide the necessary impetus to encourage undertaking controlled studies of dietary factors early in the disease process of type 1 diabetes.
    * While there are no carbohydrates that are essential to good health, there are essential amino acids and essential fats.

    Sources:

    1. de la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008 Nov;2(6):1101-13.
    2. http://www.medicine.uottawa.ca/Students/MD/BlockOrientation/assets/documents/e_inf_week05.pdf
    3. http://www.elements4health.com/type-1-diabetes-patients-have-immune-response-to-wheat-proteins.html
    4. Scott FW, Sarwar G, Cloutier HE. Diabetogenicity of various protein sources in the diet of the diabetes-prone BB rat. Adv Exp Med Biol 1988; 246: 277–85.
    5. Scott F. Dietary initiators and modifiers of BB rat diabetes. In:Shafrir E, Renold AE, eds. Frontiers in Diabetes Research:Lessons from Animal Diabetes. London: Libbey, 1988: 34–9.
    6. Hoorfar J, Buschard K, Dagnaes-Hansen F. Prophylactic nutritional modification of the incidence of diabetes in autoimmune non-obese diabetic (NOD) mice. Br J Nutr 1993; 69: 597–607.
    7. Funda DP, Kaas A, Bock T, Tlaskalova-Hogenov H, Buschard K. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 1999; 15: 323–7.
    8. Bao F, Yu L, Babu S et al. One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J Autoimmun 1999; 13:143–8.
    9. Lampasona V, Bonfanti R, Bazzigaluppi E et al. Antibodies to tissue transglutaminase C in type I diabetes. Diabetologia 1999; 42: 1195–8.
    10. Pocecco M, Ventura A. Coeliac disease and insulin-dependent diabetes mellitus: a causal association? Acta Paediatr 1995; 84: 1432–3.
    11. Hansen D, Brock-Jacobsen B, Lund E, Bjørn C, Hansen LP, Nielsen C, Fenger C, Lillevang ST, Husby S. Clinical Benefit of a Gluten-Free Diet in Type 1 Diabetic Children With Screening-Detected Celiac Disease A population-based screening study with 2 years' follow-up Diabetes Care 29:2452-2456, 2006
    12. Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud'homme GJ, Wang Q. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes.Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11692-7. Epub 2011 Jun 27.
    13. Bouzane B, Postmedia News June 28, 2011
    14. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    0

    User Feedback

    Recommended Comments

    That's lovely for K and I hope she remains free of diabetes. My son was diagnosed with type 1 diabetes - 6.5 years after his celiac diagnosis. Doctors said it's usually the opposite (diabetes then celiac). Oh well. I find that gluten free baked goods really mess with his blood sugar - take it up and keep it up.

    Share this comment


    Link to comment
    Share on other sites

    Join eNewsletter



    Join the conversation

    You are posting as a guest. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • About Me

    As co-author of "Dangerous Grains" and "Cereal Killers", the study of the impact of gluten continues to be a driving passion in my life. I am fascinated by the way that gluten induces illness and impedes learning while it alters mood, behavior, and a host of other facets of our existence. Sure, the impact of gluten on health is an important issue, but that is only the most obvious area of impact. Mood disturbances, learning disabilities, and the loss of quality of life due to psychiatric and neurological illness are even more tragic than the plethora of physical ailments that are caused or worsened by gluten. The further I go down this rabbit hole, the more I realize that grains are a good food for ruminants - not people. I am a retired school teacher. Over the last decade, I have done some college and university level teaching, but the bulk of my teaching career was spent working with high school students. My Web page is: www.DangerousGrains.com


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-m):




  • Related Articles

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 10/16/2015 - Y Net News, under their "Health & Science" banner, published an article titled "Israeli researchers propose link between gluten and ALS", on April 17, 2015 (1). ALS refers to amyotrophic lateral sclerosis, or Lou Gehrig's disease, also known as motor neuron disease. Authorship of this article is attributed to the news agency, Reuters. The article refers to a study in which the investigators identify an autoimmune dynamic in the brain (2). The Y Net News article quotes one of these investigators as warning ALS patients against experimenting with a gluten-free diet: "Patients should not be tempted to use a gluten-free diet without...

    Tina Turbin
    Celiac.com 06/11/2016 - It's never become so clear to me how much our health and quality of life are dependent upon the food we eat since seeing myself, my family and more than my share of celiac friends and acquaintances make the transition to grain-free from gluten-free. This is evident in witnessing such positive results just from eating a biologically appropriate diet, the paleo diet, which is grain-free and thus gluten-free. Some have this simple diet termed as the caveman diet, the paleolithic diet and what-have you, but in essence it has been deemed "man's original" diet.
    In my approaches to the topics of the paleo diet, I discovered the affects...

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 09/20/2016 - A surprising research report from Australia that explores non celiac gluten sensitivity (1) has given rise to a number of journalistic offerings that range between offensive and downright silly, while the reporters who wrote them appear to have somewhat compromised reading skills (3, 4). That is not to say that the research report is without problems. However, at least that report requires a close reading to identify its most troubling elements (1). Specifically, it suggests that patients who claim to feel better on a gluten free diet are either deluded or confused. The research implies that these patients may actually feel better...

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 11/10/2016 - So far, 2014 has been a challenging new year for me. I was reminded of some events that happened almost fifty years ago. Based on that reminder, I resolved to contact a former girlfriend, both to suggest that she get testing for celiac disease, and to apologize for some insensitive things I said and did when I was 17. She was a year younger than me and one grade behind me in school. She was very slender and exceedingly self-conscious about having what she called "a chest like a boy". (She may have been experiencing delayed development, as is sometimes seen in celiac disease.) Every new place we visited, she went looking for the washroom...

    Jefferson Adams
    Celiac.com 02/01/2017 - More and more evidence shows a connection between gut inflammation and type 1 diabetes (T1D). A team of researchers recently set out to assess gut inflammatory profiles and microbiota in patients with T1D, and to compare them with healthy controls (CTRL) and with celiac disease patients as gut inflammatory disease controls.
    The research team included Silvia Pellegrini, Valeria Sordi, Andrea Mario Bolla, Diego Saita Roberto Ferrarese, Filippo Canducci, Massimo Clementi, Francesca Invernizzi, Alberto Mariani, Riccardo Bonfanti, Graziano Barera, Pier Alberto Testoni, Claudio Doglioni, Emanuele Bosi, and Lorenzo Piemonti. They are...

    Jefferson Adams
    Celiac.com 02/22/2017 - Type 1 diabetes mellitus (T1DM) and celiac disease (celiac disease) are autoimmune diseases that share similar genetic patterns. T1DM treatment is based on diet, physical activity and insulin therapy, whereas celiac disease treatment is based on a gluten-free diet.
    A research team recently set out to evaluate the quality of life (QoL) of individuals with the association of T1DM and celiac disease, to characterize their nutritional status and to compare it with those with only one disease and to healthier control subjects. The research team included JG Nunes-Silva, VS Nunes, RP Schwartz, S1 Mlss Trecco, D Evazian, ML Correa-Giannella...

    Jefferson Adams
    Celiac.com 07/05/2017 - Numerous researchers have documented a connection between celiac disease and type 1 diabetes.
    One team of researchers recently set out to examine international differences in celiac disease rates and clinical characteristics of youth with coexisting type 1 diabetes and celiac disease compared with type 1 diabetes only.
    The research team included Maria E. Craig, Nicole Prinz, Claire T. Boyle, Fiona M. Campbell, Timothy W. Jones, Sabine E. Hofer, Jill H.Simmons, Naomi Holman, Elaine Tham, Elke Fröhlich-Reiterer, Stephanie DuBose, Helen Thornton, Bruce King, David M. Maahs, Reinhard W. Holl and Justin T. Warner.
    To analyze ...