Celiac.com Sponsor (A1):



Celiac.com Sponsor (A1-m):


  • Join Our Community!

    Ask us a question in our celiac / gluten-free forum.

  • Jefferson Adams

    Suppressive Function of Regulatory T Cells Impaired in Celiac Patients

    Jefferson Adams
    0
    Reviewed and edited by a celiac disease expert.

      Does Treg cell dysfunction play a major role in celiac disease pathogenesis?


    Is Treg cell dysfunction a key factor in celiac disease development? Photo: Zappys Technology Solutions
    Caption: Is Treg cell dysfunction a key factor in celiac disease development? Photo: Zappys Technology Solutions

    Celiac.com 06/21/2017 - Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease. What does that mean?

    Although researchers understand the effector T-cell response in patients with celiac disease pretty well, they really don't know very much about the role played by regulatory T cells (Treg cells) in the loss of tolerance to gluten. To get a better picture, a team of researchers recently set out to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells.



    Celiac.com Sponsor (A12):






    Celiac.com Sponsor (A12-m):




    The research team included L Cook, CML Munier, N3 Seddiki, D van Bockel, N Ontiveros, MY Hardy, JK Gillies, MK Levings, HH Reid, J Petersen, J Rossjohn, RP Anderson, JJ Zaunders, JA Tye-Din, AD Kelleher.

    For the study, gluten-free patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. The research team collected peripheral blood before and after challenge. To effectively measure the gluten-specific CD4+ T-cell response, they combined traditional IFN-γ ELISpot with a test for antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation, but relies instead on antigen-induced co-expression of CD25 and OX40 (CD134).

    During the gluten challenge, levels of circulating gluten-specific Treg cells and effector T cells both rose sharply, peaking on the sixth day.

    The team recounts surprise on discovering that about 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Even though they saw normal suppressive function in peripheral polyclonal Treg cells from celiac patients, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells showed sharply reduced suppressive function compared with polyclonal Treg cells.

    The team's study offers the first estimates of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of celiac patients.

    FOXP3+CD39+ Treg cells made up the majority of all circulating gluten-specific CD4+ T cells, but they showed reduced suppressive function, indicating that Treg cell dysfunction might be a key factor in celiac disease development.

    This type of research is crucial to help document the genetic physiology of celiac disease, which will help researchers to better understand and treat the disease itself.

    Source:

    • J Allergy Clin Immunol. 2017 Mar 8. pii: S0091-6749(17)30343-3. doi: 10.1016/j.jaci.2017.02.015.

       

      The researchers are variously affiliated with the Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW Sydney, Sydney, Australia, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia; the Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia; the Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW Sydney, Sydney, Australia; St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia, Immunology Division, Walter and Eliza Hall Institute, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom; the Immunology Division, Walter and Eliza Hall Institute, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia; ImmusanT, Cambridge, Massachusetts; and the Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Australia.

    0

    User Feedback

    Recommended Comments

    There are no comments to display.



    Join the conversation

    You are posting as a guest. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • About Me

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University, and has authored more than 2,500 articles on celiac disease. His coursework includes studies in science, scientific methodology, biology, anatomy, medicine, logic, and advanced research. He previously served as SF Health News Examiner for Examiner.com, and devised health and medical content for Sharecare.com. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of the book "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-m):




  • Related Articles

    Jefferson Adams
    Celiac.com 04/28/2016 - The development of celiac disease has been tied to polymorphisms in the regulator of G-protein signaling 1 (RGS1) and interleukin-12 A (IL12A) genes, but existing data are unclear and contradictory.
    A research team recently set out to examine the associations of two single-nucleotide polymorphisms (SNPs) (rs2816316 in RGS1 and rs17810546 in IL12A) with celiac disease risk using meta-analysis.
    The research team included Cong-Cong Guo, Man Wang, Feng-Di Cao, Wei-Huang Huang, Di Xiao, Xing-Guang Ye, Mei-Ling Ou, Na Zhang, Bao-Huan Zhang, Yang Liu, Guang Yang, and Chun-Xia Jing.

    They are variously affiliate with the Department...

    Jefferson Adams
    Celiac.com 05/30/2016 - People with HLA genes have the highest risk factor for developing autoimmune disorders. The vast majority of people with celiac disease carry the HLA DQA1*05 and DQB1*02 alleles, both of which encode the DQ2.5 molecule.
    A research team recently set out to examine the implications for anti-gluten T cell response of the preferential expression of HLA-DQ2.5 genes associated with celiac disease with respect to non-predisposing HLA genes. The research team included L Pisapia, A Camarca, S Picascia, V Bassi, P Barba, G Del Pozzo, and C Gianfrani. They are variously affiliated with the Institute of Protein Biochemistry-CNR, the Institute...

    Jefferson Adams
    Celiac.com 08/09/2016 - Some researchers have suggested that gluten may not be the actual trigger of symptoms in non-celiac gluten sensitivity. Others feel that gluten is definitely the trigger, especially in certain cases.
    A team of researchers recently set out to evaluate patients with clinical non-celiac gluten sensitivity (NCGS), who presented with lymphocytic enteritis, positive celiac genetics and negative celiac blood tests. The team felt that the results would confirm that gluten is, in fact, the trigger of symptoms in this subgroup of patients.
    The research team included M Rosinach, F Fernández-Bañares, A Carrasco, M Ibarra, R Temiño, A...

    Jefferson Adams
    Celiac.com 05/18/2017 - Researchers understand pretty well that celiac disease is driven in part by an accumulation of immune cells in the duodenal mucosa as a consequence of both adaptive and innate immune responses to undigested gliadin peptides.
    Mast cells are innate immune cells that produce a majority of co-stimulatory signals and inflammatory mediators in the intestinal mucosa. A team of researchers recently set out to evaluate the role of mast cells in the development of celiac disease.
    The research team included Barbara Frossi, PhD, Claudio Tripodo, MD, Carla Guarnotta, PhD, Antonio Carroccio, MD, Marco De Carli, MD, Stefano De Carli, MD...