Jump to content
This site uses cookies. Continued use is acceptance of our Terms of Use and Privacy Policy. More Info... ×
  • Welcome to Celiac.com!

    You have found your celiac tribe! Join us and ask questions in our forum, share your story, and connect with others.




  • Celiac.com Sponsor (A1):



    Celiac.com Sponsor (A1-M):


  • Get Celiac.com Updates:
    Support Celiac.com!
    eNewsletter
    Donate
  • Record is Archived

    This article is now archived and is closed to further replies.

    Jefferson Adams
    Jefferson Adams

    Hemolysis Interferes with the Detection of Anti-Tissue Transglutaminase Antibodies in Celiac Disease

    Reviewed and edited by a celiac disease expert.
    Hemolysis Interferes with the Detection of Anti-Tissue Transglutaminase Antibodies in Celiac Disease - New research on hemolysis and celiac disease.
    Caption: New research on hemolysis and celiac disease.

    Celiac.com 06/17/2010 - In a recent letter to the editors of Clinical Chemistry, Carolina Arguelles-Grande, Gary L. Norman, Govind Bhagat, and Peter H. R. Green describe how hemolysis interferes with the detection of anti–tissue transglutaminase antibodies in celiac disease.

    They are variously affiliated with the Departments of Medicine and Pathology at Columbia University's College of Physicians and Surgeons in New York, and with INOVA Diagnostics, Inc., in San Diego, CA.

    Celiac.com Sponsor (A12):
    Using human recombinant or erythrocyte tTG-IgA–based ELISA assays to measure anti–tissue transglutaminase (tTG) antibodies is one of the favored methods for diagnosing celiac disease.

    However, assessments of various tTG kits have shown variations in sensitivity, which has raised some alarms among clinicians. Many clinicians suspect that hemolysis plays a role in these variations.

    To assess the effect of hemolysis on tTG-IgA titers, the team looked at blood samples from 9 patients with biopsy-confirmed, active celiac disease who chose to participate in the study.

    They split the samples into 3 groups, with three samples in each group. They divided the samples according to tTG-IgA concentration after thawing. They categorized the samples as high titer (>185 U), intermediate titer (100–140 U), and borderline titer (20–50 U).

    The team hemolyzed a whole-blood sample taken from 1 tTG/DGP-seronegative patient. They measured hemoglobin in the sample at 149 g/L of hemoglobin. They repeatedly froze and thawed the sample until 90% of cells hemolyzed. They then serially diluted in ratios of 1:2, 1:5, 1:10, 1:50, 1:100, 1:500 in PBS to obtain hemoglobin concentrations of 67.1, 26.8, 13.4, 2.7, 1.3, and 0.27 g/L, respectively. They then added to each sample at a 1:1 ratio.

    For the tTG sequestration assessment, the team added human recombinant tTG from Diarect AG for final concentrations of 0.04, 0.02, 0.01, and 0.002 g/L. The team used undiluted serum as the baseline titer reference, and serum diluted 1:2 in PBS as a control.

    To measure antibody titers, they used 2 ELISA test kits: QUANTA LiteTM h-tTG IgA (human erythrocyte tTG-IgA based) and Gliadin II (DGP-IgA based) from INOVA Diagnostics, Inc.  The team conducted blinded screens per manufacturer instructions, and compared the results for each group using the Mann–Whitney U-test, with P values <0.05 considered significant.

    They discovered that adding hemolyzed blood (HB) to sera of patients with active celiac disease lowered levels of anti-tTG, with intermediate- and borderline-titer groups seeing the largest reduction. Anti-DGP antibodies remained unchanged.

    Total average titer loss of anti-tTG vs anti-DGP antibodies was 36% vs 13% in the high-titer groups (P 0.026), 45% vs 3% (P = 0.026) in the intermediate titer groups, and 51% vs 2% in the borderline-titer groups (P = 0.0022)

    The team also found that adding ever higher concentrations of hemoglobin lowered the titers of anti-tTG, but not of anti-DGP, causing negative anti-tTG results in samples with low tTG antibody concentrations.

    The anti-tTG titer decreased 2%–65% in the high-titer groups, 1%–81% in the intermediate-titer groups, and 16%–74% in the borderline-titer group at hemoglobin concentrations of 0.3– 67.1 g/L.

    This compares with a decrease in anti-DGP titers of 10%–16% for high-titer groups, 4%–8% for intermediate-titer groups, and 7%–3% for the borderline-titer groups at hemoglobin concentrations of 0.3– 67.1 g/L.

    In all groups, tTG titer reduction was greater at higher concentrations of HB/HGB and gradually recovered as the red tint started to vanish at about 13 g/L of HGB, until complete visual disappearance at about 0.3g/L HGB).

    In the intermediate- and borderline-titer groups, titer reduction induced false-negative results at 20 U, with the anti-tTG, but not anti-DGP assays for HGB concentrations  ≥13 or ≥0.3 g/L, respectively.

    They also found that raising concentrations of exogenous tTG (recombinant human tTG) to intermediate-titer blood samples triggered a significant reduction in anti-tTG assay titers similar to that seen with hemoglobin (range, 32%–82%; mean, 69%), as compared with that of anti-DGP titers (mean, 18%; range, 1%–38%; P = 0.0159).

    Hemolysis is clearly indicated by a red tint in serum plasma, and is one of the most common reasons for labs to reject specimens. Visible hemolysis starts at about 0.5 g/L of hemoglobin and is obvious above 1.3 g/L of hemoglobin.

    The results show that that hemolysis does interfere with the detection of anti-tTG antibodies, and that visibly hemolyzed blood samples generate false-negative anti–tTG-IgA results.

    These findings may explain false-negative tests for celiac disease that arise when clinicians use tTG-IgA assays. They encourage clinicians and laboratories to take measures to avoid hemolysis. If they notice hemolyzed blood samples, they should alert physicians so new blood samples can be taken. If redrawing samples is not possible, hemolyzed samples should be measured for anti-DGP antibodies.

    Clinicians who suspect hemolysis should consider using anti-DGP serological tests, which are not influenced by hemolysis.

    Source:

    •  Open Original Shared Link


    User Feedback

    Recommended Comments

    There are no comments to display.



    Guest
    This is now closed for further comments

  • Get Celiac.com Updates:
    Support Celiac.com:
    Donate
  • About Me

    Jefferson Adams

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University. His articles, essays, poems, stories and book reviews have appeared in numerous magazines, journals, and websites, including North American Project, Antioch Review, Caliban, Mississippi Review, Slate, and more. He is the author of more than 2,500 articles on celiac disease. His university coursework includes studies in science, scientific methodology, biology, anatomy, physiology, medicine, logic, and advanced research. He previously devised health and medical content for Colgate, Dove, Pfizer, Sharecare, Walgreens, and more. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of numerous books, including "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.

    >VIEW ALL ARTICLES BY JEFFERSON ADAMS

     


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-M):




  • Related Articles

    Jefferson Adams
    Celiac.com 07/10/2007 - A study published recently in the American Journal of Gastroenterology tracks the appearance and disappearance of antibodies associated with childhood risk celiac disease, and suggests that key antibodies often disappear even when gluten is still present in the diet.
    A team of Finnish doctors set out to evaluate the natural history of antibodies versus tissue transglutaminase (TGA), endomysium (EMA), reticulin (ARA), and gliadin (AGA-IgG and AGA-IgA). They looked at data for children genetically at risk for celiac disease, specifically, children who carried HLA-conferred risk of celiac disease who had been monitored frequently since birth. The research team was made up of S. Simell, S. Hoppu, A. Hekkala, T. Simell, M.R. Ståhlberg, M. Viander, H. Yrjä...


    Jefferson Adams
    Celiac.com 06/29/2012 - A group of researchers recently set out to study cases of positive tissue transglutaminase antibodies with negative endomysial antibodies to determine whether or not such cases amount to celiac disease.
    The team included Thomas Hornung; Pavel Gordins; Clare Parker; and Nicholas Thompson. They are variously affiliated with the departments of Gastroenterology, and Immunology at the Northern Deanery of Newcastle upon Tyne, and with the department of Gastroenterology at Freeman Hospital in Newcastle upon Tyne in the UK.
    The most sensitive and specific blood tests for diagnosing celiac disease are those that detect immunoglobulin A (IgA) antibodies against human tissue transglutaminase (tTGA) enzyme, and those that measure aspects of connective tissue covering individual...


    Jefferson Adams
    Celiac.com 04/22/2014 - Blood tests are highly valuable for diagnosing celiac disease. However, their role in gauging mucosal healing in celiac children who have adopted gluten-free diets is unclear.
    A team of researchers recently set out to compare the performance of antibody tests in predicting small-intestinal mucosal status in diagnosis and follow-up of pediatric celiac disease.
    The research team included Edith Vécsei, Stephanie Steinwendner, Hubert Kogler, Albina Innerhofer, Karin Hammer, Oskar A Haas, Gabriele Amann, Andreas Chott, Harald Vogelsang, Regine Schoenlechner, Wolfgang Huf, and Andreas Vécsei.
    They are variously affiliated with the Clinical Department of Pathology and the Department of Internal Medicine III of the Division for Gastroenterology and Hepatology, ...


    Jefferson Adams
    Celiac.com 06/06/2014 - Celiac disease guidelines suggest that some patients with high anti-tTG ab levels might be diagnosed without biopsy.
    A team of Indian researchers recently reviewed their celiac disease database to determine if anti-tissue transglutaminase (tTG) antibody (ab) titers correlate with severity of villous abnormalities in Indian patients, and to find out a cutoff value of anti-tTG ab fold-rise that might best predict celiac disease. The researchers included P. Singh, L. Kurray, A. Agnihotri, P. Das, A.K. Verma, V. Sreenivas, S. Datta Gupta, and G.K. Makharia. The are affiliated with the Departments of Gastroenterology and Human Nutrition, Pathology, and Biostatistics at the All India Institute of Medical Sciences in New Delhi, India.
    The team reviewed data on 36...


  • Recent Activity

    1. - Bev in Milw replied to Kate1990's topic in Gluten-Free Foods, Products, Shopping & Medications
      3

      Gluten-free bread

    2. - CelestialScribe replied to Ading69's topic in Traveling with Celiac Disease
      2

      Seeking Gluten-Free Advice for My Trip to South Korea!

    3. - RMJ replied to Katiec123's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      3

      Finding out I’m coeliac whilst pregnant

    4. - Katiec123 replied to Katiec123's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      3

      Finding out I’m coeliac whilst pregnant

    5. - RMJ replied to Katiec123's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      3

      Finding out I’m coeliac whilst pregnant


  • Celiac.com Sponsor (A19):



  • Member Statistics

    • Total Members
      121,031
    • Most Online (within 30 mins)
      7,748

    Shearina
    Newest Member
    Shearina
    Joined

  • Celiac.com Sponsor (A20):


  • Forum Statistics

    • Total Topics
      120.3k
    • Total Posts
      1m

  • Celiac.com Sponsor (A22):





  • Celiac.com Sponsor (A21):



  • Popular Now

    • Vicrob
      4
    • lasthope2024
    • brittanyf
    • gameboy68
    • Sobiha
      4
  • Popular Articles

    • Scott Adams
    • Scott Adams
    • Scott Adams
    • Scott Adams
    • Scott Adams
  • Upcoming Events

×
×
  • Create New...