• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,263
    Total Members
    3,093
    Most Online
    Izzyevan1014
    Newest Member
    Izzyevan1014
    Joined
  • 0

    Celiac Disease and Barley Malt - by Donald D. Kasarda, Former Research Chemist for the United States Department of Agriculture


    Scott Adams

    The following was written by Donald D. Kasarda who is a research chemist in the Crop Improvement and Utilization Research Unit of the United States Department of Agriculture. If you have any questions or comments regarding the piece, you can address them to Don at: kasarda@pw.usda.gov.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    The connection with wheat (and rye and barley) wasnt recognized until the 1950s - (a)nd it wasnt until the 1960s that intestinal biopsies began to become commonly used in the diagnosis of celiac disease. With regard to the harmfulness of barley malt, the situation is complicated. I will give you my best shot with the qualification that the ideal experiments have not been done and a definitive statement is not possible at this time.

    Because barley malt is made from barley grain that has been germinated it is reasonably certain to be less toxic than barley itself. The hordein proteins and starch in the endosperm of barley grains, like the equivalent gluten proteins and starch in wheat, are there for storage purposes. In a sense, they provide food for the new plant upon germination. In order to use the hordein proteins, the grain releases and generates enzymes upon germination that break down the storage proteins into their constituent amino acids. The problem is that the process is not complete during a short germination, so some peptides (short pieces of the proteins) remain intact in malted barley. There is experimental evidence for this. The resulting mix of peptides is highly complex.

    We know from work described in the scientific literature that relatively small polypeptide chains can still retain activity in celiac disease and we know something about a few sequences that seem to be harmful. But we probably dont know all the sequences that are harmful and we havent put our fingers on the common theme that gives rise to the activity in celiac disease. So the question arises as to whether or not the remaining sequences in malted barley are harmful.

    The possibilities that come to my mind are:

    • There are sufficient remaining harmful peptides (with sizes including approximately 12 or more amino acid residues) to give a significant activity in celiac disease to barley malt (remember though that barley malt is usually a minor component of most foods in which it is used and processing might decrease the amount of harmful peptides in a malt product);
    • There are traces of these peptides, but they are sufficiently minimal so as to cause no discernible harm; or
    • The key harmful amino acid sequences are completely destroyed by the enzymes during germination (I can speculate that there might be an important enzyme, very active, in germination that clips a key bond in active sequences, thus reducing the concentration of those active sequences to almost nil while still allowing non-harmful peptides to exist; no evidence exists for this speculation, but it could be used as a working hypothesis for experimentation).

    There is no completely solid evidence for or against there being a threshold of gluten consumption below which no harm, or at least no lasting harm, occurs and above which definite harm occurs (but see my previous post to the list on starch/malt question). This is a difficult area to study where zero consumption is being approached and the arguments that come up are at least similar to those that have arisen in regard to the question of whether or not there is a minimal level of radiation exposure below which no harm is caused, but above which there is harm that increases with dosage. Accordingly, celiac patients must choose arbitrarily the path they feel comfortable with.

    Here are some references that deal with the question of peptide toxicity. It is not a simple situation:

    • Shewry, P. R., Tatham, A. S., Kasarda, D. D. Cereal proteins and coeliac disease. In Coeliac Disease, Ed. M. N. Marsh. Blackwell Scientific, London 1992;pp. 305-348.
    • Kasarda, D. D. Toxic cereal grains in coeliac disease. In: Gastrointestinal Immunology and Gluten Sensitive Disease: Proc. 6th International Symp. On Coeliac Disease, C. Feighery and C. OFarrelly, eds., Oak Tree Press, Dublin 1994;pp. 203-220.
    • Wieser, H., Belitz, H.-D., Idar, D., Ashkenazi, A. Coeliac activity of the gliadin peptides CT-1 and CT-2. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 1986;182:115-117.
    • De Ritis, G., Auricchio, S., Jones, H. W., Lew, E. J.-L., Bernardin, J. E., Kasarda, D. D. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease Gastroenterology 1988;94:41-49.
    • Fluge, 0, K. Sletten, G. Fluge, Aksnes, L., S. Elsayed. In vitro toxicity of purified gluten peptides tested by organ culture. Journal of Pediatric Gastroenterology and Nutrition 1994;18:186-192.
    • Sturgess, R., Day, P., Ellis, H. J., Lundin, K. A., Gjertsen, H. A, Kontakou, M., Ciclitira, P. J. Wheat peptide challenge in coeliac disease. Lancet 1994;343:758-761.
    • Marsh, M. N., Morgan, S., Ensari, A., Wardle, T., Lobley, R., Mills, C., Auricchio, S. In vivo activity of peptides 31-43, 44-55, 56-68 of a-gliadin in gluten sensitive enteropathy (GSE). Supplement to Gastroenterology 1995;108:A871.
    0


    User Feedback

    Recommended Comments

    Guest Peter Blenkinsop

    Posted

    Very difficult to follow - a firm conclusion in plain, simple language would be helpful!

    Share this comment


    Link to comment
    Share on other sites
    Guest Peter Fay

    Posted

    I believe this chemist is clear on the need for further testing and support from the experimental community.

    As a Physicist, I can relate to the sometimes difficult presentation to the layman.

    Share this comment


    Link to comment
    Share on other sites
    Guest Marcel

    Posted

    Basically, a short summary would be, the proteins and therefore also the active peptides in the barley grains should be broken down during the germination of the barley. But this notion has not been assured yet. Therefore:

    If you consequently don't eat anything that might contain gluten activity, don't eat anything with barley malt.

    Otherwise, try it out. For me, I eat corn flakes with barley malt and I don't feel anything.

    Share this comment


    Link to comment
    Share on other sites
    Guest Jess McCutcheon

    Posted

    No real conclusion here.

    Share this comment


    Link to comment
    Share on other sites
    Very difficult to follow - a firm conclusion in plain, simple language would be helpful!

    Are you daft? The article speaks of NO firm conclusion, it is something that is not fully researched yet and you should experiment for yourself.

    Share this comment


    Link to comment
    Share on other sites
    Guest Chris Howell

    Posted

    I just tried a tea containing barley malt, and after just a couple of hours had extremely explosive reaction. My opinion, AVOID IT

    Share this comment


    Link to comment
    Share on other sites
    Guest Emma G.

    Posted

    I ate some chocolate and had a HORRIBLE reaction. After I checked the ingredients, I saw there was barley malt and since it was the only "new" food I had recently, I think it did me in! Avoid it if you can!

    Share this comment


    Link to comment
    Share on other sites
    Guest sandra green

    Posted

    It is good that I can get newsletters to read and maybe help me as that amount off foods I am unable to have is high.

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   10 Members, 0 Anonymous, 992 Guests (See full list)

  • Related Articles

    Scott Adams
    Preface: The following information was supplied originally in 1991 in the form of a letter to Phyllis Brogden, Chairperson of the Greater Philadelphia Celiac Sprue Support Group, by Donald D. Kasarda, who was a Research Chemist with the US Department of Agriculture at that time. Copies were sent to four other major celiac patient groups in the US. Dr. Kasarda retired from the USDA in 1999, but updated the information in February of 2000. Dr. Kasarda wishes to add the following disclaimer to the information: These are my opinions based on quite a few years of research in the area of proteins as they relate to celiac disease. They do not necessarily represent those of the Agricultural Research Service, U. S. Department of Agriculture. If you have any questions or comments regarding the piece, you can address them to Don at: kasarda@pw.usda.gov
    The only plants demonstrated to have proteins that damage the small intestines of people with celiac disease are those from wheat, rye, and barley (and the man-made wheat-rye cross called triticale). Although oats had generally been considered harmful until 1996, several high quality studies published since then indicate that oats are not harmful either in celiac disease or dermatitis herpetiformis. Some physicians choose not to accept these findings or else point out that there is some potential problem of contamination of oats by wheat. The contamination question has not yet been adequately researched, but may be overemphasized. The three harmful species are members of the grass family and are quite closely related to one another according to various schemes of plant classification (taxonomy). However, not all members of the grass family damage the intestines of celiac patients. Rice and corn, for example, are apparently harmless.
    Many other grains have not been subjected to controlled testing or to the same scrutiny as wheat, rye, barley, oats, rice, and corn in relation to celiac disease. In fact, only wheat and oats have been extensively studied in controlled experiments with the most up-to-date methods. If we accept corn and rice as safe, however, and this seems reasonable to me, then members of the grass family that are more closely related to these species (on the basis of taxonomy) than to wheat are likely to be safe. Such grasses include sorghum, millet, teff, ragi, and Jobs tears, which appear to be reasonably closely related to corn. In some cases, there are protein studies in support of this conclusion, although the studies are not sufficiently complete to provide more than guidance. Scientifically controlled feeding studies with celiac patients would provide a better answer. However, such studies are not likely to be carried out in the next few years because of high costs and the difficulty of obtaining patient participation (such studies would likely involve intestinal biopsy). In lieu of feeding studies, further studies of protein (and DNA) would provide the next best way to evaluate my suggestion that millet, sorghum, teff, ragi, and Jobs tears are not likely to be toxic in celiac disease, although even such studies are hampered at present by a lack of knowledge of which sequences in the wheat gluten proteins are harmful. There is evidence that a few sequences are harmful, but not all possibilities have yet been tested.
    The scientific name for bread wheat is Triticum aestivum var. aestivum--the first part of the name defines the genus (Triticum) and the second part, the species (aestivum). Species falling in the genus Triticum are almost certain to be harmful to celiac patients. Grain proteins of these species include the various types characteristic of the gluten proteins found in bread wheats (including the alpha-gliadins) that cause damage to the small intestine in celiac disease. Durum wheats (Triticum turgidum var. durum) used for pasta are also harmful to celiac patients. Some Triticum species of current concern include Triticum aestivum var. spelta (common names include spelt or spelta), Triticum turgidum var. polonicum (common names include Polish wheat, and, recently, Kamut), and Triticum monococcum var. monococcum (common names include einkorn and small spelt). I recommend that celiac patients avoid grain from these species. Also, given their very close relationship to bread and durum wheats, I think it is unlikely that these grains would be safe for those with classical allergic responses to wheat.
    Rye (Secale cereale) and barley (Hordeum vulgare) are toxic in celiac disease even though these two species are less closely related to bread wheat than spelta and Kamut. They belong to different genera, Secale and Hordeum, respectively, and lack alpha-gliadins, which may be an especially toxic fraction.
    There have been anecdotal reports suggesting a lack of toxicity in celiac disease for spelta and Kamut, along with anecdotal reports of the opposite, at least in the case of spelt-celiac patients who have been harmed by eating it. Controlled tests would be necessary to draw a firm conclusion, although they hardly seem necessary insofar as spelt and Kamut should be considered forms of wheat.
    The diagnosis, sometimes self-diagnosis, of celiac disease is occasionally made without benefit of reasonably rigorous medical or clinical tests, especially intestinal biopsy. Individuals who are diagnosed in this way without rigorous testing may not actually have celiac disease. Claims that particular foods cause this latter group no problems in relation to their celiac disease could cause confusion.
    Furthermore, celiac patients who report no problems in the short run with spelt or Kamut might experience relapse later. There is now adequate evidence that when celiac patients on a gluten-free diet (that is, a diet free of any proteins or peptides from wheat, rye, and barley) have wheat reintroduced to their diets, times-to-relapse vary enormously among individuals, ranging from hours to months, or even years. And this is for wheat, presumably the most toxic of all cereal grains to celiac patients.
    Additionally, the relapse may not be accompanied by obvious symptoms, but be recognized only by physicians through observation of characteristic changes in the small intestinal tissues obtained by biopsy. The reasons for the enormous variability of response times are not known. It may be speculated that the variability has something to do with the degree of recovery of the lining of the small intestine on a gluten-free diet, the degree of stress that the patient had been experiencing (including infections), and individual genetic differences.
    As I have indicated, all known grain species that cause problems for celiac patients are members of the grass family. In plant taxonomy, the grass family belongs to the Plant Kingdom Subclass known as monocotyledonous plants (monocots). The only other grouping at the Subclass level is that of dicotyledonous plants (dicots). Some other species about which celiac patients have questions actually are dicots, which places them in very distant relationship to the grass family. Such species include buckwheat, amaranth, quinoa, and rape. The seed of the last plant listed, rape, is not eaten, but an oil is pressed from the seeds that is commonly used in cooking. This oil is being marketed as canola oil. Because of their very distant relationship to the grass family and to wheat, it is highly unlikely that these dicots will contain the same type of protein sequence found in wheat proteins that causes problems for celiac patients. Of course, some quirk of evolution could have given rise in these dicots to proteins with the toxic amino acid sequence found in wheat proteins. But if such concerns were carried to a logical conclusion, celiac patients would have to exclude all plant foods from their diets. For example, buckwheat and rhubarb belong to the same plant family (Polygonaceae). If buckwheat were suspect for celiac patients, should not rhubarb, its close relation, be suspect as well?
    It may be in order to caution celiac patients that they may have undesirable reactions to any of these foods--reactions that are not related to celiac disease. Allergic reactions may occur to almost any protein, including proteins found in rice, but there is a great deal of individual variation in allergic reactions. Also, buckwheat, for example, has been claimed to contain a photosensitizing agent that will cause some people who have just eaten it to develop a skin rash when they are exposed to sunlight. Quinoa and amaranth may have high oxalate contents-approaching those of spinach and these oxalate levels may cause problems for some people. Such reactions should be looked for, but for most people, buckwheat, quinoa, or amaranth eaten in moderation apparently do not cause problems. (Buckwheat is sometimes found in mixture with wheat, which of course would cause a problem for celiac patients.) It seems no more necessary for all people with celiac disease to exclude buckwheat from their diets because some celiac patients react to it than it would be for all celiac patients to exclude milk from their diets because some celiac patients have a problem with milk.
    In conclusion, scientific knowledge of celiac disease, including knowledge of the proteins that cause the problem, and the grains that contain these proteins, is in a continuing state of development. There is much that remains to be done. Nevertheless, steady progress has been made over the years. As far as I know, the following statements are a valid description of the state of our knowledge:
    Spelt or spelta and Kamut are wheats. They have proteins toxic to celiac patients and should be avoided just as bread wheat, durum wheat, rye, barley, and triticale should be avoided. Rice and corn (maize) are not toxic to celiac patients. Certain cereal grains, such as various millets, sorghum, teff, ragi, and Jobs tears are close enough in their genetic relationship to corn to make it likely that these grains are safe for celiac patients to eat. However, significant scientific studies have not been carried out for these latter grains. There is no reason for celiac patients to avoid plant foods that are very distantly related to wheat. These include buckwheat, quinoa, amaranth, and rapeseed oil (canola). Some celiac patients might suffer allergies or other adverse reactions to these grains or foodstuffs made from them, but there is currently no scientific basis for saying that these allergies or adverse reactions have anything to do with celiac disease. A celiac patient may have an allergy to milk, but that does not mean that all celiac patients will have an adverse reaction to milk. Again, however, scientific studies are absent or minimal for these dicots. A list of my publications with pertinence to celiac disease follows. Cross-references to the literature for most of the points discussed above can be found in these publications.
    Kasarda, D. D., and DOvidio, R. 1999. Amino acid sequence of an alpha-gliadin gene from spelt wheat (Spelta) includes sequences active in celiac disease. Cereal Chem. 76:548-551. Kasarda, D. D. 1997. Celiac Disease. In Syllabus of the North American Society for Pediatric Gastroenterology & Nutrition, 4th Annual Postgraduate Course, Toronto, Ontario, Canada, pp. 13-21. Kasarda, D. D. 1997. Gluten and gliadin: precipitating factors in coeliac disease. In Coeliac Disease: Proceedings of the 7th International Symposium on Coeliac Disease (September 5-7, 1996), edited by M. Mäkki, P. Collin, and J. K. Visakorpi, Coeliac Disease Study Group, Institute of Medical Technology, University of Tampere,Tampere, Finland, pp. 195-212. Srinivasan, U., Leonard, N., Jones, E., Kasarda, D. D., Weir, D. G., OFarrelly, C., and Feighery, C. 1996. Absence of oats toxicity in coeliac disease. British Medical Journal 313:1300-1301. Tatham, A. S., Fido, R. J., Moore, C. M., Kasarda, D. D., Kuzmicky, D. D., Keen, J. N., and Shewry, P. R. Characterization of the major prolamins of tef (Eragrostis tef) and finger millet (Eleusine coracana). J. Cereal Sci. 24:65-71. 1996. Kasarda, D. D. 1994. Defining cereals toxicity in coeliac disease. In Gastrointestinal Immunology and Gluten-Sensitive Disease, edited by C. Feighery, and F. OFarrelly, Oak Tree Press, Dublin, pp. 203-220. Shewry, P. R., Tatham, A. S., and Kasarda, D. D. 1992. Cereal proteins and coeliac disease. In Coeliac Disease, edited by M. N. Marsh, Blackwell Scientific Publications, Oxford, U. K., pp. 305-348. De Ritis, G., Auricchio, S., Jones, H. W., Lew, E. J.-L., Bernardin, J. E. and Kasarda, D. D. 1988. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94:41-49. Kagnoff, M. F., Patterson, Y. J., Kumar, P. J., Kasarda, D. D., Carbone, F. R., Unsworth, D. J. and Austin, R. K. 1987. Evidence for the role of a human intestinal adenovirus in the pathogenesis of celiac disease. Gut 28:995-1001. Levenson, S. D., Austin, R. K., Dietler, M. D., Kasarda, D. D. and Kagnoff, M. F. 1985. Specificity of antigliadin antibody in celiac disease. Gastroenterology 89: 1-5. Kagnoff, M. F., Austin, R. K., Hubert, J. J., Bernardin, J. E. and Kasarda, D. D. 1984. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med. 160: 1544-1557. Grains in Relation to Celiac (Coeliac) Disease by Donald D. Kasarda.
    An annotated copy: http://wheat.pw.usda.gov/topics/

    Scott Adams
    The following was written by Donald D. Kasarda who is a research chemist in the Crop Improvement and Utilization Research Unit of the United States Department of Agriculture. If you have any questions or comments regarding the piece, you can address them to Don at: kasarda@pw.usda.gov.
    Most sprouted wheat still has gluten or gluten peptides remaining. Although the sprouting begins enzymatic action that starts to break down the gluten (a storage protein for the plant) into peptides and even amino acids. Generally this is not a complete process for sprouts used in foods so some active peptides (active in celiac disease) remain.

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023

    Jefferson Adams
    Celiac.com 06/13/2018 - There have been numerous reports that olmesartan, aka Benicar, seems to trigger sprue‐like enteropathy in many patients, but so far, studies have produced mixed results, and there really hasn’t been a rigorous study of the issue. A team of researchers recently set out to assess whether olmesartan is associated with a higher rate of enteropathy compared with other angiotensin II receptor blockers (ARBs).
    The research team included Y.‐H. Dong; Y. Jin; TN Tsacogianis; M He; PH Hsieh; and JJ Gagne. They are variously affiliated with the Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School in Boston, MA, USA; the Faculty of Pharmacy, School of Pharmaceutical Science at National Yang‐Ming University in Taipei, Taiwan; and the Department of Hepato‐Gastroenterology, Chi Mei Medical Center in Tainan, Taiwan.
    To get solid data on the issue, the team conducted a cohort study among ARB initiators in 5 US claims databases covering numerous health insurers. They used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for enteropathy‐related outcomes, including celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy. In all, they found nearly two million eligible patients. 
    They then assessed those patients and compared the results for olmesartan initiators to initiators of other ARBs after propensity score (PS) matching. They found unadjusted incidence rates of 0.82, 1.41, 1.66 and 29.20 per 1,000 person‐years for celiac disease, malabsorption, concomitant diagnoses of diarrhea and weight loss, and non‐infectious enteropathy respectively. 
    After PS matching comparing olmesartan to other ARBs, hazard ratios were 1.21 (95% CI, 1.05‐1.40), 1.00 (95% CI, 0.88‐1.13), 1.22 (95% CI, 1.10‐1.36) and 1.04 (95% CI, 1.01‐1.07) for each outcome. Patients aged 65 years and older showed greater hazard ratios for celiac disease, as did patients receiving treatment for more than 1 year, and patients receiving higher cumulative olmesartan doses.
    This is the first comprehensive multi‐database study to document a higher rate of enteropathy in olmesartan initiators as compared to initiators of other ARBs, though absolute rates were low for both groups.
    Source:
    Alimentary Pharmacology & Therapeutics

    Jefferson Adams
    Celiac.com 06/12/2018 - A life-long gluten-free diet is the only proven treatment for celiac disease. However, current methods for assessing gluten-free diet compliance are lack the sensitivity to detect occasional dietary transgressions that may cause gut mucosal damage. So, basically, there’s currently no good way to tell if celiac patients are suffering gut damage from low-level gluten contamination.
    A team of researchers recently set out to develop a method to determine gluten intake and monitor gluten-free dietary compliance in patients with celiac disease, and to determine its correlation with mucosal damage. The research team included ML Moreno, Á Cebolla, A Muñoz-Suano, C Carrillo-Carrion, I Comino, Á Pizarro, F León, A Rodríguez-Herrera, and C Sousa. They are variously affiliated with Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain; Biomedal S.L., Sevilla, Spain; Unidad Clínica de Aparato Digestivo, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Celimmune, Bethesda, Maryland, USA; and the Unidad de Gastroenterología y Nutrición, Instituto Hispalense de Pediatría, Sevilla, Spain.
    For their study, the team collected urine samples from 76 healthy subjects and 58 patients with celiac disease subjected to different gluten dietary conditions. To quantify gluten immunogenic peptides in solid-phase extracted urines, the team used a lateral flow test (LFT) with the highly sensitive and specific G12 monoclonal antibody for the most dominant GIPs and an LFT reader. 
    They detected GIPs in concentrated urines from healthy individuals previously subjected to gluten-free diet as early as 4-6 h after single gluten intake, and for 1-2 days afterward. The urine test showed gluten ingestion in about 50% of patients. Biopsy analysis showed that nearly 9 out of 10 celiac patients with no villous atrophy had no detectable GIP in urine, while all patients with quantifiable GIP in urine showed signs of gut damage.
    The ability to use GIP in urine to reveal gluten consumption will likely help lead to new and non-invasive methods for monitoring gluten-free diet compliance. The test is sensitive, specific and simple enough for clinical monitoring of celiac patients, as well as for basic and clinical research applications including drug development.
    Source:
    Gut. 2017 Feb;66(2):250-257.  doi: 10.1136/gutjnl-2015-310148.