• Join our community!

    Do you have questions about celiac disease or the gluten-free diet?

  • Ads by Google:
     




    Get email alerts Subscribe to Celiac.com's FREE weekly eNewsletter

    Ads by Google:



       Get email alertsSubscribe to Celiac.com's FREE weekly eNewsletter

  • Member Statistics

    77,473
    Total Members
    3,093
    Most Online
    hayley stan
    Newest Member
    hayley stan
    Joined
  • 0

    Asparagus Frittata (Gluten-Free)


    Jefferson Adams
    Image Caption: Photo: CC--JeffreyW

    Celiac.com 10/20/2016 - I love a good frittata! A good frittata can hold its own at breakfast, lunch, or dinner, oh, and of course, at brunch.


    Ads by Google:




    ARTICLE CONTINUES BELOW ADS
    Ads by Google:



    This frittata marries eggs, ricotta cheese, Gruyere and chives with the lovely and now plentiful asparagus to deliver one very tasty dish.

    Ingredients:

    • 6 large eggs
    • ½ cup ricotta cheese
    • 2 tablespoons unsalted butter
    • 2 shallots, sliced
    • ½ teaspoon salt
    • ½ teaspoon black pepper
    • 1 pound asparagus, tough ends discarded, spears cut diagonally to 1-inch pieces
    • 1 tablespoon fresh chives, minced
    • ¼ teaspoon dried tarragon
    • 1 cup shredded Gruyere or Swiss cheese

    Directions:
    Heat butter into a 10-inch cast iron skillet over medium heat.

    Add shallots and cook until soft and clear, about 3 minutes.

    Add asparagus and cook for 3 more minutes.

    Beat together eggs and ricotta cheese, stir in the chives and tarragon.

    Pour the egg mixture into the pan and cook until almost set, but still runny on top, about 4 to 5 minutes. While cooking, heat oven broiler.

    Sprinkle Gruyere cheese over the eggs and place under the broiler until cheese is melts and and bubbles, and the center is set, about 6 to 8 minutes.

    Remove pan from oven with oven mitts and slide frittata onto a serving plate.

    Cut into wedges.

    Mind the hot pan!

    0


    User Feedback

    Recommended Comments

    There are no comments to display.



    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Popular Contributors

  • Ads by Google:

  • Who's Online   6 Members, 0 Anonymous, 289 Guests (See full list)

  • Related Articles

    Scott Adams
    This recipe comes to us from Mireille Cote in Canada.
    ANTIPASTO
    10 small cans gluten-free tuna (packed in water)
    4 cup mini whole corn
    1 cauliflower
    5 lb. carrots
    5 whole celery
    5 jars 12 oz marinated small onions
    5 lb. red bell peppers
    5 lb. yellow and orange peppers (5 lb. all together)
    2 jars 12 oz big pitted green olives
    1quart stuffed olives
    3 jars black pitted olives
    2 jars or cans 12 oz spiced black olives
    1quart sweet pickles
    5 cup 10 oz mushrooms
    2 big cans artichokes (not marinated)
    ½ lb. green beans
    3 cup chickpeas
    SAUCE
    ½ cup olive oil
    2 cup ketchup
    1quart hot salsa *
    5 cup vinegar
    8 cans 6 oz tomato paste
    Put vinegar and oil in a BIG pot, (the best thing is to borrow one from a restaurant) Bring to boil and add all veggies but bell peppers, olives, mushrooms. Boil 10 min. Add bell peppers. Boil 10 min. Add olives and mushrooms. Let rest w/o cooking. Add tuna. Mix well. Put ketchup, salsa and tomato paste in an other pan. Boil 10 min. Add to veg. mix. Put in sterilized jars. Put the jars in pan with boiling water. The water must be 1 inch over the jars. Let boil 15 min. In an other one, put ketchup, tomato paste & salsa. Boil 10 min. *I called Old el Paso and they assured me their Salsa is gluten-free.
    Excellent on rice crackers. Always have something when guests arrive.

    Scott Adams
    3 lb. Chicken, cut up
    ½ Cup gluten-free Flour Mix
    1 Teaspoon Salt
    1/8 Teaspoon Black Pepper
    ¼ Cup Olive Oil
    1 Medium Onion
    ½ lb. Mushrooms Fresh Sliced
    1 Clove Garlic, minced
    1 Celery stalk thinly sliced
    2 Carrots, thinly sliced
    1 Teaspoon Dried basil
    1 Teaspoon Dried oregano
    4 14 ½ oz. Cans crushed Italian plum tomatoes undrained
    1 Can Olives, sliced, drained
    4 oz Tomato Puree
    ½ Cup Red Wine
    1 lb. gluten-free Vermicelli or Angel Hair pasta
    Dust the chicken with gluten-free flour, which has had the salt and pepper well mixed. Sauté in Olive Oil until Golden Brown. Move to plate with paper towels to drain. Pour off remaining oil. Place drained chicken back in pan, Add remaining ingredients, cover and simmer over low heat to 20 to 30 minutes. Adjust seasonings to taste. While chicken is simmering, cook gluten-free pasta (your choice) in salted water, per directions until Al Dente; please do not overcook pasta. This will serve 4.
    With Preparation Time This should not take more then an hour, including the cleanup time.

    Scott Adams
    This recipe comes to us from Robin Moore (Can also be chicken parmesan, shrimp parmesan, veal, etc...).
     
    Note: I do NOT deep fry the eggplant or bread it. The layering gives the same effect without being greasy. The proportions in this are variable and lots of things can make good additions, like sprinkling shrimp in. Amounts will vary on the size of the pan you use, and none are set in stone, especially the type of veggies you use. Additionally, you could slice chicken breasts up and layer them instead of eggplant, and this goes for veal or pork as well. Many people think the eggplant is chicken until I tell them otherwise. Its good hot, excellent cold, addictive, and even if you hate eggplant you will probably love this.
    2 cups bread crumbs. Make breadcrumbs, either grate the fresh bread, whirl it in a blender, or toast it in the oven a while and then put it in a blender if you need bread crumbs that dont stick together. In this recipe, either way works, just break up the clumps and spread them out. I prefer Food for Lifes Brown Rice, fruit-sweetened bread for this.
    Ingredients:
    One peeled eggplant: I recommend slicing it lengthwise and then slicing the long slices into strips as they are more maneuverable in a pan than round slices 1 cup Sliced Mushrooms, I like the brown Crimini type Red bell peppers - slice into rings Parmesan Cheese Line a deep-dish pan with tinfoil and spray Pam into it. Put down a thin layer of crumbs and parmesan, I dont really measure, just enough to cover the bottom with crumbs and then shake some Parmesan out. Then I put a layer of eggplant, topped with mushroom and red pepper slices, and then another layer of crumbs and Parmesan, and so forth until the pan is filled. End with a layer of crumbs and Parmesan. Then pour sauce over it.
    Sauce:
    Either a can of tomato paste and 4 cans of water to thin it, or a couple of cans of diced tomatoes in juice. Either will work, and the amount varies depending on how big a pan you are using. Normally this will cover a 9x12 inch pan that is 3 inches deep.
    Garlic, about a teaspoon of powdered, or five or six cloves crushed in a garlic press Mixed Italian seasonings - half a teaspoon Dried Porcini Mushrooms broken up into very small pieces. - This is optional, though they add a lot of flavor ½ cup chardonnay 1 teaspoon white balsamic vinegar OR apple cider vinegar with a teaspoon of sugar Sea Salt: ¼ teaspoon OR regular salt Onion: One cup, finely diced Ground fennel seed: about 1/3 teaspoon Fresh rosemary - ½ teaspoon finely chopped Dried basil: one teaspoon Simmer the sauce for a bit to blend things together, and then pour over the eggplant layered in the pan. You might need to use a chopstick or something to poke it a bit and make sure the sauce penetrates down to the bottom (or lift some of the slices with your finger to do this).
    Shake Parmesan generously all over the top, then spray Pam on foil to cover pan. Crimp it well and make it tent up over and not touch the food if you can. Seal it well and bake for 50 min in a 350F oven. Its a good idea to put it on a rack close to the top of the oven and have a buffer pan on the bottom rack to dissipate the direct heat. Then take off the lid and add a bit more Parmesan and bake for ten more minutes.

    Scott Adams
    This recipe comes to us from Marian Wisnev.
    1-10 oz. package chopped spinach, (cooked and drained)
    9 noodles
    1-cup small curd cottage cheese
    8 oz. cream cheese
    1 ½ cup shredded mozzarella
    32 oz jar spaghetti sauce
    ½ cup Parmesan cheese
    ¾ teaspoon oregano
    1 egg
    Mix cottage cheese, mozzarella, Parmesan, softened cream cheese, oregano, egg and spinach. Spread thin layer of spaghetti sauce on the bottom of a 9 X 12 pan, place 3 lasagna noodles on bottom followed by ½ of cheese mixture, add layer of spaghetti sauce. Repeat. Top with 3 noodles and sauce. Pour ¾ cup water around edges. Cover and bake at 350 for 1 hour and 15 minutes. Let set for 15 minutes uncovered for the rest of the water to absorb before serving.

  • Recent Articles

    Jefferson Adams
    Celiac.com 06/19/2018 - Could baking soda help reduce the inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease? Scientists at the Medical College of Georgia at Augusta University say that a daily dose of baking soda may in fact help reduce inflammation and damage caused by autoimmune diseases like rheumatoid arthritis, and celiac disease.
    Those scientists recently gathered some of the first evidence to show that cheap, over-the-counter antacids can prompt the spleen to promote an anti-inflammatory environment that could be helpful in combating inflammatory disease.
    A type of cell called mesothelial cells line our body cavities, like the digestive tract. They have little fingers, called microvilli, that sense the environment, and warn the organs they cover that there is an invader and an immune response is needed.
    The team’s data shows that when rats or healthy people drink a solution of baking soda, the stomach makes more acid, which causes mesothelial cells on the outside of the spleen to tell the spleen to go easy on the immune response.  "It's most likely a hamburger not a bacterial infection," is basically the message, says Dr. Paul O'Connor, renal physiologist in the MCG Department of Physiology at Augusta University and the study's corresponding author.
    That message, which is transmitted with help from a chemical messenger called acetylcholine, seems to encourage the gut to shift against inflammation, say the scientists.
    In patients who drank water with baking soda for two weeks, immune cells called macrophages, shifted from primarily those that promote inflammation, called M1, to those that reduce it, called M2. "The shift from inflammatory to an anti-inflammatory profile is happening everywhere," O'Connor says. "We saw it in the kidneys, we saw it in the spleen, now we see it in the peripheral blood."
    O'Connor hopes drinking baking soda can one day produce similar results for people with autoimmune disease. "You are not really turning anything off or on, you are just pushing it toward one side by giving an anti-inflammatory stimulus," he says, in this case, away from harmful inflammation. "It's potentially a really safe way to treat inflammatory disease."
    The research was funded by the National Institutes of Health.
    Read more at: Sciencedaily.com

    Jefferson Adams
    Celiac.com 06/18/2018 - Celiac disease has been mainly associated with Caucasian populations in Northern Europe, and their descendants in other countries, but new scientific evidence is beginning to challenge that view. Still, the exact global prevalence of celiac disease remains unknown.  To get better data on that issue, a team of researchers recently conducted a comprehensive review and meta-analysis to get a reasonably accurate estimate the global prevalence of celiac disease. 
    The research team included P Singh, A Arora, TA Strand, DA Leffler, C Catassi, PH Green, CP Kelly, V Ahuja, and GK Makharia. They are variously affiliated with the Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Lady Hardinge Medical College, New Delhi, India; Innlandet Hospital Trust, Lillehammer, Norway; Centre for International Health, University of Bergen, Bergen, Norway; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Gastroenterology Research and Development, Takeda Pharmaceuticals Inc, Cambridge, MA; Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy; Department of Medicine, Columbia University Medical Center, New York, New York; USA Celiac Disease Center, Columbia University Medical Center, New York, New York; and the Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India.
    For their review, the team searched Medline, PubMed, and EMBASE for the keywords ‘celiac disease,’ ‘celiac,’ ‘tissue transglutaminase antibody,’ ‘anti-endomysium antibody,’ ‘endomysial antibody,’ and ‘prevalence’ for studies published from January 1991 through March 2016. 
    The team cross-referenced each article with the words ‘Asia,’ ‘Europe,’ ‘Africa,’ ‘South America,’ ‘North America,’ and ‘Australia.’ They defined celiac diagnosis based on European Society of Pediatric Gastroenterology, Hepatology, and Nutrition guidelines. The team used 96 articles of 3,843 articles in their final analysis.
    Overall global prevalence of celiac disease was 1.4% in 275,818 individuals, based on positive blood tests for anti-tissue transglutaminase and/or anti-endomysial antibodies. The pooled global prevalence of biopsy-confirmed celiac disease was 0.7% in 138,792 individuals. That means that numerous people with celiac disease potentially remain undiagnosed.
    Rates of celiac disease were 0.4% in South America, 0.5% in Africa and North America, 0.6% in Asia, and 0.8% in Europe and Oceania; the prevalence was 0.6% in female vs 0.4% males. Celiac disease was significantly more common in children than adults.
    This systematic review and meta-analysis showed celiac disease to be reported worldwide. Blood test data shows celiac disease rate of 1.4%, while biopsy data shows 0.7%. The prevalence of celiac disease varies with sex, age, and location. 
    This review demonstrates a need for more comprehensive population-based studies of celiac disease in numerous countries.  The 1.4% rate indicates that there are 91.2 million people worldwide with celiac disease, and 3.9 million are in the U.S.A.
    Source:
    Clin Gastroenterol Hepatol. 2018 Jun;16(6):823-836.e2. doi: 10.1016/j.cgh.2017.06.037.

    Jefferson Adams
    Celiac.com 06/16/2018 - Summer is the time for chips and salsa. This fresh salsa recipe relies on cabbage, yes, cabbage, as a secret ingredient. The cabbage brings a delicious flavor and helps the salsa hold together nicely for scooping with your favorite chips. The result is a fresh, tasty salsa that goes great with guacamole.
    Ingredients:
    3 cups ripe fresh tomatoes, diced 1 cup shredded green cabbage ½ cup diced yellow onion ¼ cup chopped fresh cilantro 1 jalapeno, seeded 1 Serrano pepper, seeded 2 tablespoons lemon juice 2 tablespoons red wine vinegar 2 garlic cloves, minced salt to taste black pepper, to taste Directions:
    Purée all ingredients together in a blender.
    Cover and refrigerate for at least 1 hour. 
    Adjust seasoning with salt and pepper, as desired. 
    Serve is a bowl with tortilla chips and guacamole.

    Dr. Ron Hoggan, Ed.D.
    Celiac.com 06/15/2018 - There seems to be widespread agreement in the published medical research reports that stuttering is driven by abnormalities in the brain. Sometimes these are the result of brain injuries resulting from a stroke. Other types of brain injuries can also result in stuttering. Patients with Parkinson’s disease who were treated with stimulation of the subthalamic nucleus, an area of the brain that regulates some motor functions, experienced a return or worsening of stuttering that improved when the stimulation was turned off (1). Similarly, stroke has also been reported in association with acquired stuttering (2). While there are some reports of psychological mechanisms underlying stuttering, a majority of reports seem to favor altered brain morphology and/or function as the root of stuttering (3). Reports of structural differences between the brain hemispheres that are absent in those who do not stutter are also common (4). About 5% of children stutter, beginning sometime around age 3, during the phase of speech acquisition. However, about 75% of these cases resolve without intervention, before reaching their teens (5). Some cases of aphasia, a loss of speech production or understanding, have been reported in association with damage or changes to one or more of the language centers of the brain (6). Stuttering may sometimes arise from changes or damage to these same language centers (7). Thus, many stutterers have abnormalities in the same regions of the brain similar to those seen in aphasia.
    So how, you may ask, is all this related to gluten? As a starting point, one report from the medical literature identifies a patient who developed aphasia after admission for severe diarrhea. By the time celiac disease was diagnosed, he had completely lost his faculty of speech. However, his speech and normal bowel function gradually returned after beginning a gluten free diet (8). This finding was so controversial at the time of publication (1988) that the authors chose to remain anonymous. Nonetheless, it is a valuable clue that suggests gluten as a factor in compromised speech production. At about the same time (late 1980’s) reports of connections between untreated celiac disease and seizures/epilepsy were emerging in the medical literature (9).
    With the advent of the Internet a whole new field of anecdotal information was emerging, connecting a variety of neurological symptoms to celiac disease. While many medical practitioners and researchers were casting aspersions on these assertions, a select few chose to explore such claims using scientific research designs and methods. While connections between stuttering and gluten consumption seem to have been overlooked by the medical research community, there is a rich literature on the Internet that cries out for more structured investigation of this connection. Conversely, perhaps a publication bias of the peer review process excludes work that explores this connection.
    Whatever the reason that stuttering has not been reported in the medical literature in association with gluten ingestion, a number of personal disclosures and comments suggesting a connection between gluten and stuttering can be found on the Internet. Abid Hussain, in an article about food allergy and stuttering said: “The most common food allergy prevalent in stutterers is that of gluten which has been found to aggravate the stutter” (10). Similarly, Craig Forsythe posted an article that includes five cases of self-reporting individuals who believe that their stuttering is or was connected to gluten, one of whom also experiences stuttering from foods containing yeast (11). The same site contains one report of a stutterer who has had no relief despite following a gluten free diet for 20 years (11). Another stutterer, Jay88, reports the complete disappearance of her/his stammer on a gluten free diet (12). Doubtless there are many more such anecdotes to be found on the Internet* but we have to question them, exercising more skepticism than we might when reading similar claims in a peer reviewed scientific or medical journal.
    There are many reports in such journals connecting brain and neurological ailments with gluten, so it is not much of a stretch, on that basis alone, to suspect that stuttering may be a symptom of the gluten syndrome. Rodney Ford has even characterized celiac disease as an ailment that may begin through gluten-induced neurological damage (13) and Marios Hadjivassiliou and his group of neurologists and neurological investigators have devoted considerable time and effort to research that reveals gluten as an important factor in a majority of neurological diseases of unknown origin (14) which, as I have pointed out previously, includes most neurological ailments.
    My own experience with stuttering is limited. I stuttered as a child when I became nervous, upset, or self-conscious. Although I have been gluten free for many years, I haven’t noticed any impact on my inclination to stutter when upset. I don’t know if they are related, but I have also had challenges with speaking when distressed and I have noticed a substantial improvement in this area since removing gluten from my diet. Nonetheless, I have long wondered if there is a connection between gluten consumption and stuttering. Having done the research for this article, I would now encourage stutterers to try a gluten free diet for six months to see if it will reduce or eliminate their stutter. Meanwhile, I hope that some investigator out there will research this matter, publish her findings, and start the ball rolling toward getting some definitive answers to this question.
    Sources:
    1. Toft M, Dietrichs E. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson’s disease--two cases. BMC Neurol. 2011 Apr 8;11:44.
    2. Tani T, Sakai Y. Stuttering after right cerebellar infarction: a case study. J Fluency Disord. 2010 Jun;35(2):141-5. Epub 2010 Mar 15.
    3. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    4. Jäncke L, Hänggi J, Steinmetz H. Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol. 2004 Dec 10;4(1):23.
    5. Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud AL. How the brain repairs stuttering. Brain. 2009 Oct;132(Pt 10):2747-60. Epub 2009 Aug 26.
    6. Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011 Jun 11.
    7. Lundgren K, Helm-Estabrooks N, Klein R. Stuttering Following Acquired Brain Damage: A Review of the Literature. J Neurolinguistics. 2010 Sep 1;23(5):447-454.
    8. [No authors listed] Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 43-1988. A 52-year-old man with persistent watery diarrhea and aphasia. N Engl J Med. 1988 Oct 27;319(17):1139-48
    9. Molteni N, Bardella MT, Baldassarri AR, Bianchi PA. Celiac disease associated with epilepsy and intracranial calcifications: report of two patients. Am J Gastroenterol. 1988 Sep;83(9):992-4.
    10. http://ezinearticles.com/?Food-Allergy-and-Stuttering-Link&id=1235725 
    11. http://www.craig.copperleife.com/health/stuttering_allergies.htm 
    12. https://www.celiac.com/forums/topic/73362-any-help-is-appreciated/
    13. Ford RP. The gluten syndrome: a neurological disease. Med Hypotheses. 2009 Sep;73(3):438-40. Epub 2009 Apr 29.
    14. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A. Does cryptic gluten sensitivity play a part in neurological illness? Lancet. 1996 Feb 10;347(8998):369-71.

    Jefferson Adams
    Celiac.com 06/14/2018 - Refractory celiac disease type II (RCDII) is a rare complication of celiac disease that has high death rates. To diagnose RCDII, doctors identify a clonal population of phenotypically aberrant intraepithelial lymphocytes (IELs). 
    However, researchers really don’t have much data regarding the frequency and significance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. Such data could provide useful comparison information for patients with RCDII, among other things.
    To that end, a research team recently set out to try to get some information about the frequency and importance of clonal T cell receptor (TCR) gene rearrangements (TCR-GRs) in small bowel (SB) biopsies of patients without RCDII. The research team included Shafinaz Hussein, Tatyana Gindin, Stephen M Lagana, Carolina Arguelles-Grande, Suneeta Krishnareddy, Bachir Alobeid, Suzanne K Lewis, Mahesh M Mansukhani, Peter H R Green, and Govind Bhagat.
    They are variously affiliated with the Department of Pathology and Cell Biology, and the Department of Medicine at the Celiac Disease Center, New York Presbyterian Hospital/Columbia University Medical Center, New York, USA. Their team analyzed results of TCR-GR analyses performed on SB biopsies at our institution over a 3-year period, which were obtained from eight active celiac disease, 172 celiac disease on gluten-free diet, 33 RCDI, and three RCDII patients and 14 patients without celiac disease. 
    Clonal TCR-GRs are not infrequent in cases lacking features of RCDII, while PCPs are frequent in all disease phases. TCR-GR results should be assessed in conjunction with immunophenotypic, histological and clinical findings for appropriate diagnosis and classification of RCD.
    The team divided the TCR-GR patterns into clonal, polyclonal and prominent clonal peaks (PCPs), and correlated these patterns with clinical and pathological features. In all, they detected clonal TCR-GR products in biopsies from 67% of patients with RCDII, 17% of patients with RCDI and 6% of patients with gluten-free diet. They found PCPs in all disease phases, but saw no significant difference in the TCR-GR patterns between the non-RCDII disease categories (p=0.39). 
    They also noted a higher frequency of surface CD3(−) IELs in cases with clonal TCR-GR, but the PCP pattern showed no associations with any clinical or pathological feature. 
    Repeat biopsy showed that the clonal or PCP pattern persisted for up to 2 years with no evidence of RCDII. The study indicates that better understanding of clonal T cell receptor gene rearrangements may help researchers improve refractory celiac diagnosis. 
    Source:
    Journal of Clinical Pathologyhttp://dx.doi.org/10.1136/jclinpath-2018-205023